IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v33y2005i5p413-418.html
   My bibliography  Save this article

Multicriteria decision making for optimal blending for beneficiation of coal: a fuzzy programming approach

Author

Listed:
  • Chakraborty, M.
  • Chandra, M.K.

Abstract

Beneficiation of coal refers to the production of wash coal from raw coal with the help of some suitable beneficiation technologies. The processed coal is used by the different steel plants to serve their purpose during the manufacturing process of steel. The present paper deals with the optimal planning for blending raw coal of different grades used for beneficiation with a view to satisfy the requirements of the end users with desired specifications. The input specifications of coal samples are known whereas the output specifications are imprecise in nature. The aim of the work is to fix the level of the raw coal from different coal seams to be fed for beneficiation to meet the desired target of yield and ash percentage to maximum extent. Further, it is also desired by the decision-maker (DM) to restrict the input cost of raw coal to be fed for beneficiation. The problem is modeled as multicriteria decision-making problem with imprecise specifications. Fuzzy set theoretic approach has been used and a corresponding model has been developed. The solution of the problem would enable the DM to optimize the raw coal feed with existing available specifications from different collieries along with the overall degree of satisfaction.

Suggested Citation

  • Chakraborty, M. & Chandra, M.K., 2005. "Multicriteria decision making for optimal blending for beneficiation of coal: a fuzzy programming approach," Omega, Elsevier, vol. 33(5), pages 413-418, October.
  • Handle: RePEc:eee:jomega:v:33:y:2005:i:5:p:413-418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00100-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Dong & Gordon Huang & Guanhui Cheng & Shan Zhao, 2018. "Water Resources and Farmland Management in the Songhua River Watershed under Interval and Fuzzy Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4177-4200, October.
    2. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    3. Sevastjanov, Pavel & Dymova, Ludmila, 2009. "Stock screening with use of multiple criteria decision making and optimization," Omega, Elsevier, vol. 37(3), pages 659-671, June.
    4. Liao, Huchang & Wu, Xingli & Mi, Xiaomei & Herrera, Francisco, 2020. "An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule," Omega, Elsevier, vol. 93(C).
    5. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    3. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    4. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    5. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    6. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    7. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    8. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    9. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    10. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    11. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    12. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    13. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    14. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    15. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    16. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    17. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    18. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    19. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
    20. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:33:y:2005:i:5:p:413-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.