IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v168y2018icp290-303.html
   My bibliography  Save this article

Representation of multivariate Bernoulli distributions with a given set of specified moments

Author

Listed:
  • Fontana, Roberto
  • Semeraro, Patrizia

Abstract

We propose a simple but new method of characterizing multivariate Bernoulli variables belonging to a given class, i.e., with some specified moments. Within a given class, this characterization allows us to generate easily a sample of mass functions. It also provides the bounds that all the moments must satisfy to be compatible and the possibility to choose the best distribution according to a certain criterion. For the special case of the Fréchet class of the multivariate Bernoulli distributions with given margins, we find a polynomial characterization of the class. Our characterization allows us to have bounds for the higher order moments. An algorithm is presented and illustrated.

Suggested Citation

  • Fontana, Roberto & Semeraro, Patrizia, 2018. "Representation of multivariate Bernoulli distributions with a given set of specified moments," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 290-303.
  • Handle: RePEc:eee:jmvana:v:168:y:2018:i:c:p:290-303
    DOI: 10.1016/j.jmva.2018.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18300241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
    2. Teugels, Jozef L, 1990. "Some representations of the multivariate Bernoulli and binomial distributions," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 256-268, February.
    3. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    4. Bahjat F. Qaqish, 2003. "A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations," Biometrika, Biometrika Trust, vol. 90(2), pages 455-463, June.
    5. Sharakhmetov, Sh. & Ibragimov, R., 2002. "A Characterization of Joint Distribution of Two-Valued Random Variables and Its Applications," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 389-408, November.
    6. Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Fontana & Elisa Luciano & Patrizia Semeraro, 2021. "Model risk in credit risk," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 176-202, January.
    2. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Andrea Collevecchio & Robert Griffiths, 2023. "A Class of Non-Reversible Hypercube Long-Range Random Walks and Bernoulli Autoregression," Journal of Theoretical Probability, Springer, vol. 36(1), pages 623-645, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krause, Daniel & Scherer, Matthias & Schwinn, Jonas & Werner, Ralf, 2018. "Membership testing for Bernoulli and tail-dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 240-260.
    2. Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
    3. Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
    4. Berman, Oded & Krass, Dmitry & Menezes, Mozart B.C., 2013. "Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns," Omega, Elsevier, vol. 41(4), pages 766-779.
    5. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    6. Hammill, Bradley G. & Preisser, John S., 2006. "A SAS/IML software program for GEE and regression diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1197-1212, November.
    7. Shults, Justine, 2017. "Simulating longer vectors of correlated binary random variables via multinomial sampling," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 1-11.
    8. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    9. Deng, Yihao & Sabo, Roy T. & Chaganty, N. Rao, 2012. "Multivariate probit analysis of binary familial data using stochastic representations," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 656-663.
    10. Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
    11. Modarres, Reza, 2011. "High-dimensional generation of Bernoulli random vectors," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1136-1142, August.
    12. Roy T. Sabo & N. Rao Chaganty, 2011. "Letter to the Editor of Biometrics on “Joint Regression Analysis for Discrete Longitudinal Data” by Madsen and Fang," Biometrics, The International Biometric Society, vol. 67(4), pages 1669-1670, December.
    13. Hines, R.J. O'Hara & Hines, W.G.S., 2010. "Indices for covariance mis-specification in longitudinal data analysis with no missing responses and with MAR drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 806-815, April.
    14. Anestis Touloumis & Alan Agresti & Maria Kateri, 2013. "GEE for Multinomial Responses Using a Local Odds Ratios Parameterization," Biometrics, The International Biometric Society, vol. 69(3), pages 633-640, September.
    15. Højsgaard, Søren & Halekoh, Ulrich & Yan, Jun, 2005. "The R Package geepack for Generalized Estimating Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i02).
    16. Guosheng Yin & Yu Shen, 2005. "Adaptive Design and Estimation in Randomized Clinical Trials with Correlated Observations," Biometrics, The International Biometric Society, vol. 61(2), pages 362-369, June.
    17. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    18. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.
    19. Xiao, Tim, 2018. "The Valuation of Credit Default Swap with Counterparty Risk and Collateralization," EconStor Preprints 203447, ZBW - Leibniz Information Centre for Economics.
    20. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:168:y:2018:i:c:p:290-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.