IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v13y2007i6p355-361.html
   My bibliography  Save this article

Detecting periodic patterns of arrival delay

Author

Listed:
  • Abdel-Aty, Mohamed
  • Lee, Chris
  • Bai, Yuqiong
  • Li, Xin
  • Michalak, Martin

Abstract

This study identifies the periodic patterns of arrival delay for non-stop domestic flights at the Orlando International Airport during 2002–2003. Cyclic variations in air travel demand and weather at the airport were observed and their consequent effects on flight delay were investigated. This study detected the frequencies of any regularly repeating delay patterns and then identified the factors associated with the detected frequencies of delay. These sequential tasks called the “two-stage approach†were performed using a mathematical frequency analysis and statistical analysis techniques. The results of the frequency analysis showed that arrival delay displayed daily, weekly and seasonal patterns of variation. The results of the statistical analysis showed that time of day, day of week, season, flight distance, precipitation at MCO and scheduled time intervals between successive flights were significantly correlated with arrival delay.

Suggested Citation

  • Abdel-Aty, Mohamed & Lee, Chris & Bai, Yuqiong & Li, Xin & Michalak, Martin, 2007. "Detecting periodic patterns of arrival delay," Journal of Air Transport Management, Elsevier, vol. 13(6), pages 355-361.
  • Handle: RePEc:eee:jaitra:v:13:y:2007:i:6:p:355-361
    DOI: 10.1016/j.jairtraman.2007.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699707000646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2007.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinn-Tsai Wong & Sui-Ling Li & David Gillingwater, 2002. "An Optimization Model for Assessing Flight Technical Delay," Transportation Planning and Technology, Taylor & Francis Journals, vol. 25(2), pages 121-153, January.
    2. Abdelghany, Khaled F. & S. Shah, Sharmila & Raina, Sidhartha & Abdelghany, Ahmed F., 2004. "A model for projecting flight delays during irregular operation conditions," Journal of Air Transport Management, Elsevier, vol. 10(6), pages 385-394.
    3. Reynolds-Feighan, Aisling J. & Button, Kenneth J., 1999. "An assessment of the capacity and congestion levels at European airports," Journal of Air Transport Management, Elsevier, vol. 5(3), pages 113-134.
    4. Golaszewski, Richard, 2002. "Reforming air traffic control: an assessment from the American perspective," Journal of Air Transport Management, Elsevier, vol. 8(1), pages 3-11.
    5. Wu, Cheng-Lung, 2005. "Inherent delays and operational reliability of airline schedules," Journal of Air Transport Management, Elsevier, vol. 11(4), pages 273-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    2. Arora, Swapan Deep & Mathur, Sameer, 2020. "Effect of airline choice and temporality on flight delays," Journal of Air Transport Management, Elsevier, vol. 86(C).
    3. Lin, Pei-Chun, 2023. "The propagation of European airports’ on-time performance and on-time flights via air connectivity prior to the Covid-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 109(C).
    4. Chen, Zhenhua & Wang, Yuxuan & Zhou, Lei, 2021. "Predicting weather-induced delays of high-speed rail and aviation in China," Transport Policy, Elsevier, vol. 101(C), pages 1-13.
    5. Chandra, Aitichya & Verma, Ashish & Sooraj, K.P. & Padhi, Radhakant, 2023. "Modelling and assessment of the arrival and departure process at the terminal area: A case study of Chennai international airport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    6. Kapolke, Manu & Fürstenau, Norbert & Heidt, Andreas & Liers, Frauke & Mittendorf, Monika & Weiß, Christian, 2016. "Pre-tactical optimization of runway utilization under uncertainty," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 48-56.
    7. Paul Pao-Yen Wu & Nicholas Sterkenburg & Kirsten Everett & Dale W Chapman & Nicole White & Kerrie Mengersen, 2019. "Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-16, July.
    8. Lambelho, Miguel & Mitici, Mihaela & Pickup, Simon & Marsden, Alan, 2020. "Assessing strategic flight schedules at an airport using machine learning-based flight delay and cancellation predictions," Journal of Air Transport Management, Elsevier, vol. 82(C).
    9. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    10. Arnaldo Scarpel, Rodrigo & Pelicioni, Luciele Cristina, 2018. "A data analytics approach for anticipating congested days at the São Paulo International Airport," Journal of Air Transport Management, Elsevier, vol. 72(C), pages 1-10.
    11. Bojia Ye & Bo Liu & Yong Tian & Lili Wan, 2020. "A Methodology for Predicting Aggregate Flight Departure Delays in Airports Based on Supervised Learning," Sustainability, MDPI, vol. 12(7), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    2. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    3. Bojia Ye & Bo Liu & Yong Tian & Lili Wan, 2020. "A Methodology for Predicting Aggregate Flight Departure Delays in Airports Based on Supervised Learning," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    4. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    5. Y. X. Lee & Z. W. Zhong, 2016. "A study of the relationship between adverse weather conditions and flight delay," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 2(4), pages 112-117.
    6. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    7. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    8. Ivanov, Nikola & Netjasov, Fedja & Jovanović, Radosav & Starita, Stefano & Strauss, Arne, 2017. "Air Traffic Flow Management slot allocation to minimize propagated delay and improve airport slot adherence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 183-197.
    9. Diana, Tony, 2009. "Do market-concentrated airports propagate more delays than less concentrated ones? A case study of selected U.S. airports," Journal of Air Transport Management, Elsevier, vol. 15(6), pages 280-286.
    10. Chen, Lu & Li, Yong-Quan & Liu, Chih-Hsing, 2019. "How airline service quality determines the quantity of repurchase intention - Mediate and moderate effects of brand quality and perceived value," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 185-197.
    11. Cheng-Lung Wu, 2006. "Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms," Networks and Spatial Economics, Springer, vol. 6(3), pages 235-251, September.
    12. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    13. Button, Kenneth & McDougall, Glen, 2006. "Institutional and structure changes in air navigation service-providing organizations," Journal of Air Transport Management, Elsevier, vol. 12(5), pages 236-252.
    14. Nombela, Gustavo & de Rus, Gines & Betancor, Ofelia, 2004. "Internalizing airport congestion," Utilities Policy, Elsevier, vol. 12(4), pages 323-331, December.
    15. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    16. James F. Nolan & Pamela Ritchie & John Rowcroft, 2003. "September 11 and the World Airline Financial Crisis," Transport Reviews, Taylor & Francis Journals, vol. 24(2), pages 239-255, June.
    17. Tomová, Anna, 2015. "The need for new directions in airspace economics: Seventy years after Chicago," Journal of Air Transport Management, Elsevier, vol. 44, pages 1-7.
    18. Kieran Feighan & Aisling J. Reynolds-Feighan, 2004. "An application of damage cost allocation for airport services in Ireland," Open Access publications 10197/2934, School of Economics, University College Dublin.
    19. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    20. Psaraki, Voula & Abacoumkin, Costas, 2002. "Access mode choice for relocated airports: the new Athens International Airport," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 89-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:13:y:2007:i:6:p:355-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.