IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v11y2005i4p273-282.html
   My bibliography  Save this article

Inherent delays and operational reliability of airline schedules

Author

Listed:
  • Wu, Cheng-Lung

Abstract

This paper explores the inherent delays of airline schedules resulting from limited buffer times and stochastic disruptions in airline operations. The reliability of airline schedules is discussed and a set of measuring indices is developed to evaluate schedule reliability. It is found that significant gaps exist between the real operating delays, the inherent delays (from simulation) and the zero-delay scenario. Delay propagation and its impact on schedule reliability are also discussed. Results show that airline schedules must consider the stochasticity in daily operations. Schedules may become robust and reliable, only if buffer times are embedded and designed properly in airline schedules.

Suggested Citation

  • Wu, Cheng-Lung, 2005. "Inherent delays and operational reliability of airline schedules," Journal of Air Transport Management, Elsevier, vol. 11(4), pages 273-282.
  • Handle: RePEc:eee:jaitra:v:11:y:2005:i:4:p:273-282
    DOI: 10.1016/j.jairtraman.2005.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699705000141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2005.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng-Lung Wu & Robert E. Caves, 2003. "The punctuality performance of aircraft rotations in a network of airports," Transportation Planning and Technology, Taylor & Francis Journals, vol. 26(5), pages 417-436, October.
    2. Abdelghany, Khaled F. & S. Shah, Sharmila & Raina, Sidhartha & Abdelghany, Ahmed F., 2004. "A model for projecting flight delays during irregular operation conditions," Journal of Air Transport Management, Elsevier, vol. 10(6), pages 385-394.
    3. Wu, Cheng-Lung & Caves, Robert E., 2002. "Towards the optimisation of the schedule reliability of aircraft rotations," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 419-426.
    4. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    5. Wu, Cheng-Lung & Caves, Robert E., 2002. "Modelling of aircraft rotation in a multiple airport environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(3-4), pages 265-277, May.
    6. Cheng-Lung Wu & Robert E. Caves, 2003. "Flight schedule punctuality control and management: a stochastic approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 26(4), pages 313-330, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel-Aty, Mohamed & Lee, Chris & Bai, Yuqiong & Li, Xin & Michalak, Martin, 2007. "Detecting periodic patterns of arrival delay," Journal of Air Transport Management, Elsevier, vol. 13(6), pages 355-361.
    2. Ivanov, Nikola & Jovanović, Radosav & Fichert, Frank & Strauss, Arne & Starita, Stefano & Babić, Obrad & Pavlović, Goran, 2019. "Coordinated capacity and demand management in a redesigned Air Traffic Management value-chain," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 139-152.
    3. Yimga, Jules & Gorjidooz, Javad, 2019. "Airline schedule padding and consumer choice behavior," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 71-79.
    4. Cheng-Lung Wu, 2006. "Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms," Networks and Spatial Economics, Springer, vol. 6(3), pages 235-251, September.
    5. Ivanov, Nikola & Netjasov, Fedja & Jovanović, Radosav & Starita, Stefano & Strauss, Arne, 2017. "Air Traffic Flow Management slot allocation to minimize propagated delay and improve airport slot adherence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 183-197.
    6. Scotti, Davide & Dresner, Martin & Martini, Gianmaria, 2016. "Baggage fees, operational performance and customer satisfaction in the US air transport industry," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 139-146.
    7. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    8. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    9. Diana, Tony, 2009. "Do market-concentrated airports propagate more delays than less concentrated ones? A case study of selected U.S. airports," Journal of Air Transport Management, Elsevier, vol. 15(6), pages 280-286.
    10. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    11. Mulder, J. & van Jaarsveld, W.L. & Dekker, R., 2016. "Simultaneous optimization of speed and buffer times for robust transportation systems," Econometric Institute Research Papers EI2016-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. PeCoy, Michael D. & Redmond, Michael A., 2023. "Flight reliability during periods of high uncertainty," Journal of Air Transport Management, Elsevier, vol. 106(C).
    13. Chen, Lu & Li, Yong-Quan & Liu, Chih-Hsing, 2019. "How airline service quality determines the quantity of repurchase intention - Mediate and moderate effects of brand quality and perceived value," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 185-197.
    14. Diana, Tony, 2018. "An evaluation of the impact of wake vortex re-categorization: The case of Charlotte Douglas International airport (CLT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 41-49.
    15. Diana, Tony, 2017. "Has market concentration fostered on-time performance? A case study of seventy-two U.S. airports," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 1-8.
    16. Malandri, Caterina & Mantecchini, Luca & Reis, Vasco, 2019. "Aircraft turnaround and industrial actions: How ground handlers' strikes affect airport airside operational efficiency," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 23-32.
    17. Judith Mulder & Willem van Jaarsveld & Rommert Dekker, 2019. "Simultaneous Optimization of Speed and Buffer Times with an Application to Liner Shipping," Transportation Science, INFORMS, vol. 53(2), pages 365-382, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Jinn-Tsai & Tsai, Shy-Chang, 2012. "A survival model for flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 5-11.
    2. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    3. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    4. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    5. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    6. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    7. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    8. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    9. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    10. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    11. Rodríguez-Sanz, à lvaro & Fernández de Marcos, Alberto & Pérez-Castán, Javier A. & Comendador, Fernando Gómez & Arnaldo Valdés, Rosa & París Loreiro, à ngel, 2021. "Queue behavioural patterns for passengers at airport terminals: A machine learning approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    12. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    13. Cheng-Lung Wu, 2006. "Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms," Networks and Spatial Economics, Springer, vol. 6(3), pages 235-251, September.
    14. Maher, Stephen J. & Desaulniers, Guy & Soumis, François, 2018. "The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 534-547.
    15. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    16. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    17. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    18. Gábor Maróti & Leo Kroon, 2005. "Maintenance Routing for Train Units: The Transition Model," Transportation Science, INFORMS, vol. 39(4), pages 518-525, November.
    19. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    20. Lee, Loo Hay & Lee, Chul Ung & Tan, Yen Ping, 2007. "A multi-objective genetic algorithm for robust flight scheduling using simulation," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1948-1968, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:11:y:2005:i:4:p:273-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.