IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v106y2023ics0969699722001417.html
   My bibliography  Save this article

Flight reliability during periods of high uncertainty

Author

Listed:
  • PeCoy, Michael D.
  • Redmond, Michael A.

Abstract

In times of great uncertainty for the airline industry, travelers are in search of reliable itineraries now more than ever. With condensed airline schedules and less options, air travelers must rely on making flight connections and manage layover times to arrive at their final destination on time. In an era with readily available information, passengers expect accurate and transparent reliability information to help improve decision making for multi-leg itineraries. However, often for reliability in air travel, this information is incomplete or not useful. In this paper we utilize historical probability distributions of flight arrival and departure times using publicly available data to give an intuitive and predictive flight itinerary reliability metric. The COVID-19 pandemic significantly affected air-travel in the US and this uncertainty is still being felt with cancellations and delays due to staff shortages and reduced demand. Therefore, we extend the stochastic network model from our previous research to air travel during COVID-19 to see the effects on flight reliability. Using this model, we conduct computational experiments to evaluate air travel through multiple reliability metrics. We show that during periods of high uncertainty, predictive historical distributions of flight data considering recency and seasonal effects are less accurate given many cancellations and a reduced flight schedule.

Suggested Citation

  • PeCoy, Michael D. & Redmond, Michael A., 2023. "Flight reliability during periods of high uncertainty," Journal of Air Transport Management, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:jaitra:v:106:y:2023:i:c:s0969699722001417
    DOI: 10.1016/j.jairtraman.2022.102322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722001417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    3. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
    4. A. Higgins & E. Kozan, 1998. "Modeling Train Delays in Urban Networks," Transportation Science, INFORMS, vol. 32(4), pages 346-357, November.
    5. Konstantinos Gkiotsalitis & Oded Cats, 2021. "Public transport planning adaption under the COVID-19 pandemic crisis: literature review of research needs and directions," Transport Reviews, Taylor & Francis Journals, vol. 41(3), pages 374-392, May.
    6. Marc Goerigk & Marie Schmidt & Anita Schöbel & Martin Knoth & Matthias Müller-Hannemann, 2014. "The Price of Strict and Light Robustness in Timetable Information," Transportation Science, INFORMS, vol. 48(2), pages 225-242, May.
    7. Michael Redmond & Ann Melissa Campbell & Jan Fabian Ehmke, 2020. "Data-driven planning of reliable itineraries in multi-modal transit networks," Public Transport, Springer, vol. 12(1), pages 171-205, March.
    8. Kou, Weibin & Chen, Xumei & Yu, Lei & Qi, Yi & Wang, Ying, 2017. "Urban commuters’ valuation of travel time reliability based on stated preference survey: A case study of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 372-380.
    9. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    10. Yang Chen & Shu Yang & Mengqi Hu & Yao-Jan Wu, 2016. "A reliability-based transit trip planning model under transit network uncertainty," Public Transport, Springer, vol. 8(3), pages 477-496, December.
    11. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    12. Zhang, Junyi & Hayashi, Yoshitsugu & Frank, Lawrence D., 2021. "COVID-19 and transport: Findings from a world-wide expert survey," Transport Policy, Elsevier, vol. 103(C), pages 68-85.
    13. Truong, Dothang, 2021. "Using causal machine learning for predicting the risk of flight delays in air transportation," Journal of Air Transport Management, Elsevier, vol. 91(C).
    14. Hossan, Md Sakoat & Asgari, Hamidreza & Jin, Xia, 2016. "Investigating preference heterogeneity in Value of Time (VOT) and Value of Reliability (VOR) estimation for managed lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 638-649.
    15. Wang, Li & Yang, Lixing & Gao, Ziyou, 2016. "The constrained shortest path problem with stochastic correlated link travel times," European Journal of Operational Research, Elsevier, vol. 255(1), pages 43-57.
    16. Wu, Cheng-Lung, 2005. "Inherent delays and operational reliability of airline schedules," Journal of Air Transport Management, Elsevier, vol. 11(4), pages 273-282.
    17. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    18. Meester, Ludolf E. & Muns, Sander, 2007. "Stochastic delay propagation in railway networks and phase-type distributions," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 218-230, February.
    19. Qinyan Zhou & Wendong Yang & Jinfu Zhu, 2019. "Mapping a Multilayer Air Transport Network with the Integration of Airway, Route, and Flight Network," Journal of Applied Mathematics, Hindawi, vol. 2019, pages 1-10, May.
    20. Lamb, Tracy L. & Ruskin, Keith J. & Rice, Stephen & Khorassani, Leili & Winter, Scott R. & Truong, Dothang, 2021. "A qualitative analysis of social and emotional perspectives of airline passengers during the COVID-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 94(C).
    21. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Cugueró-Escofet, Natàlia, 2020. "An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it?," Journal of Transport Geography, Elsevier, vol. 86(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunio, Varsolo & Mateo-Babiano, Iderlina, 2022. "Pandemics as ‘windows of opportunity’: Transitioning towards more sustainable and resilient transport systems," Transport Policy, Elsevier, vol. 116(C), pages 175-187.
    2. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    3. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    4. Redmond, Michael & Campbell, Ann Melissa & Ehmke, Jan Fabian, 2022. "Reliability in public transit networks considering backup itineraries," European Journal of Operational Research, Elsevier, vol. 300(3), pages 852-864.
    5. Bergström, Anna & Krüger, Niclas A., 2013. "Modeling passenger train delay distributions: evidence and implications," Working papers in Transport Economics 2013:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    6. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    7. Ferreira, Sara & Amorim, Marco & Lobo, António & Kern, Mira & Fanderl, Nora & Couto, António, 2022. "Travel mode preferences among German commuters over the course of COVID-19 pandemic," Transport Policy, Elsevier, vol. 126(C), pages 55-64.
    8. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    9. Zhi-Chun Li & William Lam & S. Wong & Hai-Jun Huang & Dao-Li Zhu, 2008. "Reliability Evaluation for Stochastic and Time-dependent Networks with Multiple Parking Facilities," Networks and Spatial Economics, Springer, vol. 8(4), pages 355-381, December.
    10. Pezoa, Raúl & Basso, Franco & Quilodrán, Paulina & Varas, Mauricio, 2023. "Estimation of trip purposes in public transport during the COVID-19 pandemic: The case of Santiago, Chile," Journal of Transport Geography, Elsevier, vol. 109(C).
    11. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    12. Teerasak Charoennapharat & Poti Chaopaisarn, 2022. "Factors Affecting Multimodal Transport during COVID-19: A Thai Service Provider Perspective," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    13. Maosheng Li & Zhengqiu Liu & Yonghong Zhang & Weijun Liu & Feng Shi, 2017. "Distribution analysis of train interval journey time employing the censored model with shifting character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 715-733, March.
    14. He Huang & Song Gao, 2018. "Trajectory-Adaptive Routing in Dynamic Networks with Dependent Random Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 102-117, January.
    15. Michael Redmond & Ann Melissa Campbell & Jan Fabian Ehmke, 2020. "Data-driven planning of reliable itineraries in multi-modal transit networks," Public Transport, Springer, vol. 12(1), pages 171-205, March.
    16. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    18. Mohammad Hossein Keyhani & Mathias Schnee & Karsten Weihe, 2017. "Arrive in Time by Train with High Probability," Transportation Science, INFORMS, vol. 51(4), pages 1122-1137, November.
    19. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    20. Wang, Chunzheng & Hu, Minghua & Yang, Lei & Zhao, Zheng, 2022. "Improving the spatial-temporal generalization of flight block time prediction: A development of stacking models," Journal of Air Transport Management, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:106:y:2023:i:c:s0969699722001417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.