IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v102y2022ics0969699722000424.html
   My bibliography  Save this article

Predicting the unpredictable: General Aviation (GA) aircraft cost estimation evaluation

Author

Listed:
  • Shahriar, Ali
  • Khandoker, Azad
  • Gessl, Guido
  • Sint, Sabine
  • Hamid, M.A.
  • Tariq, Abrar
  • Rahman, Al

Abstract

Cost estimation is an important part of project planning as well as research endeavor. Since the well-established cost estimation models used in the GA aircraft industry are already several decades old, a re-evaluation of their applicability to current market conditions is essential. Reliable cost estimation may also improve the chances to get external funding - a vital point for start-ups. To tackle this issue, we developed a research method to investigate potential cost models for GA aircraft that can serve as a guideline for, e.g., start-ups and research works. After gathering existing cost estimation models, they are classified and analyzed to find the ones most suitable for small aircraft. For evaluation purpose, the two most promising ones are applied to data from existing aircraft models to compare their accuracy and finally the best one is coded as an application in Python to improve usability. With our presented research method we show a possibility to perform early cost estimation for small GA aircraft and offer a software tool to simplify its application.

Suggested Citation

  • Shahriar, Ali & Khandoker, Azad & Gessl, Guido & Sint, Sabine & Hamid, M.A. & Tariq, Abrar & Rahman, Al, 2022. "Predicting the unpredictable: General Aviation (GA) aircraft cost estimation evaluation," Journal of Air Transport Management, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:jaitra:v:102:y:2022:i:c:s0969699722000424
    DOI: 10.1016/j.jairtraman.2022.102221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722000424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Wei & Mark Hansen, 2003. "Cost Economics of Aircraft Size," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 279-296, May.
    2. Johnson, Michael & Kirchain, Randolph, 2009. "Quantifying the effects of parts consolidation and development costs on material selection decisions: A process-based costing approach," International Journal of Production Economics, Elsevier, vol. 119(1), pages 174-186, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Michael D. & Kirchain, Randolph E., 2009. "Quantifying the effects of product family decisions on material selection: A process-based costing approach," International Journal of Production Economics, Elsevier, vol. 120(2), pages 653-668, August.
    2. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    3. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    4. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    5. Li, Tao & Trani, Antonio A., 2014. "A model to forecast airport-level General Aviation demand," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 192-206.
    6. Akamphon, Sappinandana & Sukkasi, Sittha & Boonyongmaneerat, Yuttanant, 2012. "Reduction of zinc consumption with enhanced corrosion protection in hot-dip galvanized coatings: A process-based cost analysis," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 1-7.
    7. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    8. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Zuidberg, Joost, 2014. "Identifying airline cost economies: An econometric analysis of the factors affecting aircraft operating costs," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 86-95.
    10. Pai, Vivek, 2010. "On the factors that affect airline flight frequency and aircraft size," Journal of Air Transport Management, Elsevier, vol. 16(4), pages 169-177.
    11. Kinoshita, Yuki & Yamada, Tetsuo & Gupta, Surendra M. & Ishigaki, Aya & Inoue, Masato, 2020. "Decision support model of environmentally friendly and economical material strategy for life cycle cost and recyclable weight," International Journal of Production Economics, Elsevier, vol. 224(C).
    12. Wei, Wenbin, 2006. "Impact of landing fees on airlines’ choice of aircraft size and service frequency in duopoly markets," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 288-292.
    13. Pai, Vivek, 2009. "On the Factors that Affect Airline Flight Frequency and Aircraft Size," 50th Annual Transportation Research Forum, Portland, Oregon, March 16-18, 2009 207722, Transportation Research Forum.
    14. Gillen, David & Gados, Alicja, 2008. "Airlines within airlines: Assessing the vulnerabilities of mixing business models," Research in Transportation Economics, Elsevier, vol. 24(1), pages 25-35.
    15. Zou, Bo & Hansen, Mark, 2014. "Flight delay impact on airfare and flight frequency: A comprehensive assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 54-74.
    16. Christophe Combemale & Kate S Whitefoot & Laurence Ales & Erica R H Fuchs, 2021. "Not all technological change is equal: how the separability of tasks mediates the effect of technology change on skill demand [Patterns of industrial innovation]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(6), pages 1361-1387.
    17. Smirti, Megan & Hansen, Mark, 2009. "Assessing the Role of Operating, Passenger, and Infrastructure Costs in Fleet Planning under Fuel Price Uncertainty," University of California Transportation Center, Working Papers qt3xt743cv, University of California Transportation Center.
    18. Morrell, Peter, 2005. "Airlines within airlines: An analysis of US network airline responses to Low Cost Carriers," Journal of Air Transport Management, Elsevier, vol. 11(5), pages 303-312.
    19. Leonardo Basso & Sergio Jara-Díaz, 2006. "Distinguishing Multiproduct Economies of Scale from Economies of Density on a Fixed-Size Transport Network," Networks and Spatial Economics, Springer, vol. 6(2), pages 149-162, June.
    20. Zakharenko, Roman & Luttmann, Alexander, 2023. "Downsizing the jet: A forecast of economic effects of increased automation in aviation," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 25-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:102:y:2022:i:c:s0969699722000424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.