IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v38y2022i3p895-909.html
   My bibliography  Save this article

Forecasting football results and exploiting betting markets: The case of “both teams to score”

Author

Listed:
  • da Costa, Igor Barbosa
  • Marinho, Leandro Balby
  • Pires, Carlos Eduardo Santos

Abstract

The continuous growth of available football data presents unprecedented research opportunities for a better understanding of football dynamics. While many research works focus on predicting which team will win a match, other interesting questions, such as whether both teams will score in a game, are still unexplored and have gained momentum with the rise of betting markets. With this in mind, we investigate the following research questions in this paper: “How difficult is the ‘both teams to score’ (BTTS) prediction problem?”, “Are machine learning classifiers capable of predicting BTTS better than bookmakers?”, and “Are machine learning classifiers useful for devising profitable betting strategies in the BTTS market?”. We collected historical football data, extracted groups of features to represent the teams’ strengths, and fed these to state-of-the-art classification models. We performed a comprehensive set of experiments and showed that, although hard to predict, in some scenarios it is possible to outperform bookmakers, which are robust baselines per se. More importantly, in some cases it is possible to beat the market and devise profitable strategies based on machine learning algorithms. The results are encouraging and, besides shedding light on the problem, may provide novel insights for all kinds of football stakeholders.

Suggested Citation

  • da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
  • Handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:895-909
    DOI: 10.1016/j.ijforecast.2021.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207021001084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2021.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giovanni Angelini & Luca De Angelis, 2017. "PARX model for football match predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
    2. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    3. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    4. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
    5. Forrest, David & Goddard, John & Simmons, Robert, 2005. "Odds-setters as forecasters: The case of English football," International Journal of Forecasting, Elsevier, vol. 21(3), pages 551-564.
    6. Shin, Hyun Song, 1993. "Measuring the Incidence of Insider Trading in a Market for State-Contingent Claims," Economic Journal, Royal Economic Society, vol. 103(420), pages 1141-1153, September.
    7. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    8. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    9. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    10. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    11. J. L. Kelly Jr., 2011. "A New Interpretation of Information Rate," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 3, pages 25-34, World Scientific Publishing Co. Pte. Ltd..
    12. Hubáček, Ondřej & Šourek, Gustav & Železný, Filip, 2019. "Exploiting sports-betting market using machine learning," International Journal of Forecasting, Elsevier, vol. 35(2), pages 783-796.
    13. Leitner, Christoph & Zeileis, Achim & Hornik, Kurt, 2010. "Forecasting sports tournaments by ratings of (prob)abilities: A comparison for the EUROÂ 2008," International Journal of Forecasting, Elsevier, vol. 26(3), pages 471-481, July.
    14. A. C. Titman & D. A. Costain & P. G. Ridall & K. Gregory, 2015. "Joint modelling of goals and bookings in association football," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 659-683, June.
    15. M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
    16. Goddard, John, 2005. "Regression models for forecasting goals and match results in association football," International Journal of Forecasting, Elsevier, vol. 21(2), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
    2. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    3. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    4. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
    5. Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
    6. Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
    7. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    8. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    9. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    10. J Reade & C Singleton & L Vaughan Williams, 2020. "Betting Markets for English Premier League Results and Scorelines: Evaluating a Simple Forecasting Model," Economic Issues Journal Articles, Economic Issues, vol. 25(1), pages 87-106, March.
    11. P. Gorgi & S. J. Koopman & R. Lit, 2023. "Estimation of final standings in football competitions with a premature ending: the case of COVID-19," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 233-250, March.
    12. Giovanni Angelini & Luca De Angelis, 2017. "PARX model for football match predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
    13. Marius Ötting & Christian Deutscher & Carl Singleton & Luca De Angelis, 2023. "Gambling on Momentum in Contests," Economics Discussion Papers em-dp2023-08, Department of Economics, University of Reading.
    14. Rebeggiani, Luca & Gross, Johannes, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181563, Verein für Socialpolitik / German Economic Association.
    15. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    16. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    17. Wheatcroft, Edward, 2020. "A profitable model for predicting the over/under market in football," International Journal of Forecasting, Elsevier, vol. 36(3), pages 916-932.
    18. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    19. Fry, John & Serbera, Jean-Philippe & Wilson, Rob, 2021. "Managing performance expectations in association football," Journal of Business Research, Elsevier, vol. 135(C), pages 445-453.
    20. Constantinou Anthony Costa & Fenton Norman Elliott, 2013. "Determining the level of ability of football teams by dynamic ratings based on the relative discrepancies in scores between adversaries," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(1), pages 37-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:895-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.