Advanced Search
MyIDEAS: Login to save this article or follow this journal

On the importance of verifying forecasting results

Contents:

Author Info

  • Yalta, A. Talha
  • Jenal, Olaf

Abstract

We discuss the various sources of error in numerical computations with the use of examples from the literature relevant to time series analysis. We also submit a case where, by manual verification, we were able to discover a plausible forecast to be erroneous due to a number of software flaws in the XLSTAT addin for Microsoft Excel. Furthermore, after discussing the alternative techniques for implementing the ARIMA (AutoRegressive Integrated Moving Average) methodology on a computer, we show that different approaches can cause considerable discrepancies in the results across different programs, and even within a single software system.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V92-4TCPMYX-1/2/30dedd7d55574b0e50f2958e3c3b1281
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 25 (2009)
Issue (Month): 1 ()
Pages: 62-73

as in new window
Handle: RePEc:eee:intfor:v:25:y:2009:i:1:p:62-73

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Yalta, A. Talha, 2008. "The accuracy of statistical distributions in Microsoft® Excel 2007," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4579-4586, June.
  2. Sawitzki, Gunther, 1994. "Testing numerical reliability of data analysis systems," Computational Statistics & Data Analysis, Elsevier, vol. 18(2), pages 269-286, September.
  3. D. McCullough, B. & Wilson, Berry, 2002. "On the accuracy of statistical procedures in Microsoft Excel 2000 and Excel XP," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 713-721, October.
  4. McCullough, B. D., 2000. "Is it safe to assume that software is accurate?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 349-357.
  5. McCullough, B.D. & Heiser, David A., 2008. "On the accuracy of statistical procedures in Microsoft Excel 2007," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4570-4578, June.
  6. H. D. Vinod & B. D. McCullough, 1999. "Corrigenda: The Numerical Reliability of Econometric Software," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1565-1565, December.
  7. B. D. McCullough & H. D. Vinod, 2003. "Verifying the Solution from a Nonlinear Solver: A Case Study," American Economic Review, American Economic Association, vol. 93(3), pages 873-892, June.
  8. McCullough, B D, 1999. "Econometric Software Reliability: EViews, LIMDEP, SHAZAM and TSP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 191-202, March-Apr.
  9. McCullough, B.D. & Wilson, Berry, 2005. "On the accuracy of statistical procedures in Microsoft Excel 2003," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1244-1252, June.
  10. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  11. Keeling, Kellie B. & Pavur, Robert J., 2007. "A comparative study of the reliability of nine statistical software packages," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3811-3831, May.
  12. E.K. Berndt & B.H. Hall & R.E. Hall, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 103-116 National Bureau of Economic Research, Inc.
  13. H. D. Vinod & B. D. McCullough, 1999. "The Numerical Reliability of Econometric Software," Journal of Economic Literature, American Economic Association, vol. 37(2), pages 633-665, June.
  14. McCullough, B. D. & Wilson, Berry, 1999. "On the accuracy of statistical procedures in Microsoft Excel 97," Computational Statistics & Data Analysis, Elsevier, vol. 31(1), pages 27-37, July.
  15. C. R. McKenzie & Sumiko Takaoka, 2007. "EViews 5.1," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1145-1152.
  16. Kusters, Ulrich & McCullough, B.D. & Bell, Michael, 2006. "Forecasting software: Past, present and future," International Journal of Forecasting, Elsevier, vol. 22(3), pages 599-615.
  17. Newbold, Paul & Agiakloglou, Christos & Miller, John, 1994. "Adventures with ARIMA software," International Journal of Forecasting, Elsevier, vol. 10(4), pages 573-581, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. A. Yalta & A. Yalta, 2010. "Should Economists Use Open Source Software for Doing Research?," Computational Economics, Society for Computational Economics, vol. 35(4), pages 371-394, April.
  2. A. Talha Yalta & A. Yasemin Yalta, 2009. "Wilkinson Tests and gretl," EHUCHAPS, Universidad del País Vasco - Facultad de Ciencias Económicas y Empresariales.
  3. Ignacio Díaz-Emparanza & Petr Mariel & María Victoria Esteban (ed.), 2009. "Econometrics with gretl. Proceedings of the gretl Conference 2009," UPV/EHU Books, Universidad del País Vasco - Facultad de Ciencias Económicas y Empresariales, edition 1, number 01.
  4. Hargreaves, Bruce R. & McWilliams, Thomas P., 2010. "Polynomial Trendline function flaws in Microsoft Excel," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1190-1196, April.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:1:p:62-73. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.