Advanced Search
MyIDEAS: Login to save this article or follow this journal

Bayesian predictions of low count time series

Contents:

Author Info

  • McCabe, B.P.M.
  • Martin, G.M.

Abstract

No abstract is available for this item.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V92-4F1H010-1/2/0700c02169a0ab87d457ba9c49e1df26
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 21 (2005)
Issue (Month): 2 ()
Pages: 315-330

as in new window
Handle: RePEc:eee:intfor:v:21:y:2005:i:2:p:315-330

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
  2. Siddhartha Chib & Edward Greenberg & Rainer Winkelmann, 1996. "Posterior Simulation and Bayes Factors in Panel Count Data Models," Econometrics 9608003, EconWPA, revised 25 Nov 1996.
  3. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-35, October.
  4. Keith Freeland & Brendan McCabe & Gael Martin, 2004. "Testing for Dependence in Non-Gaussian Time Series Data," Econometric Society 2004 Australasian Meetings 313, Econometric Society.
  5. Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Discussion Paper 1998-142, Tilburg University, Center for Economic Research.
  6. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, 09.
  7. Brännäs, Kurt & Hellström, Jörgen, 1999. "Generalized Integer-Valued Autoregression," UmeÃ¥ Economic Studies 501, Umeå University, Department of Economics.
  8. Kleibergen, Frank, 2004. "Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox," Journal of Econometrics, Elsevier, vol. 123(2), pages 227-258, December.
  9. Robert C. Jung & A. R. Tremayne, 2003. "Testing for serial dependence in time series models of counts," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 65-84, 01.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Francesco Bravo, 2011. "Comment on: Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 20(3), pages 483-486, November.
  2. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
  3. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
  4. Drost, F.C. & Akker, R. van den & Werker, B.J.M., 2007. "Efficient Estimation of Autoregression Parameters and Innovation Distributions for Semiparametric Integer-Valued AR(p) Models (Subsequently replaced by DP 2008-53)," Discussion Paper 2007-23, Tilburg University, Center for Economic Research.
  5. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
  6. T M Christensen & A. S. Hurn & K A Lindsay, 2008. "Discrete time-series models when counts are unobservable," NCER Working Paper Series 35, National Centre for Econometric Research.
  7. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
  8. Yelland, Phillip M., 2009. "Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management," International Journal of Production Economics, Elsevier, vol. 118(1), pages 95-103, March.
  9. Andersson, Jonas & Karlis, Dimitris, 2008. "Treating missing values in INAR(1) models," Discussion Papers 2008/14, Department of Business and Management Science, Norwegian School of Economics.
  10. Jason Ng & Catherine S. Forbes & Gael M. Martin & Brendan P.M. McCabe, 2011. "Non-Parametric Estimation of Forecast Distributions in Non-Gaussian, Non-linear State Space Models," Monash Econometrics and Business Statistics Working Papers 11/11, Monash University, Department of Econometrics and Business Statistics.
  11. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
  12. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
  13. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
  14. Jung, Robert C. & Tremayne, A.R., 2006. "Coherent forecasting in integer time series models," International Journal of Forecasting, Elsevier, vol. 22(2), pages 223-238.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:21:y:2005:i:2:p:315-330. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.