IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v36y2015i6p839-852.html
   My bibliography  Save this article

Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros

Author

Listed:
  • Wagner Barreto-Souza

Abstract

type="main" xml:id="jtsa12131-abs-0001"> In this article, we propose a first-order integer-valued autoregressive [INAR(1)] process for dealing with count time series with deflation or inflation of zeros. The proposed process has zero-modified geometric marginals and contains the geometric INAR(1) process as a particular case. The proposed model is also capable of capturing underdispersion and overdispersion, which sometimes are caused by deflation or inflation of zeros. We explore several statistical and mathematical properties of the process, discuss point estimation of the parameters and find the asymptotic distribution of the proposed estimators. We also propose a test based on our model for checking if the count time series considered is deflated or inflated of zeros. Two empirical illustrations are presented in order to show the potential for practice of our zero-modified geometric INAR(1) process. This article contains a Supporting Information.

Suggested Citation

  • Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
  • Handle: RePEc:bla:jtsera:v:36:y:2015:i:6:p:839-852
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12131
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    2. Simos Meintanis & Dimitris Karlis, 2014. "Validation tests for the innovation distribution in INAR time series models," Computational Statistics, Springer, vol. 29(5), pages 1221-1241, October.
    3. Mátyás Barczy & Márton Ispány & Gyula Pap & Manuel Scotto & Maria Silva, 2012. "Additive outliers in INAR(1) models," Statistical Papers, Springer, vol. 53(4), pages 935-949, November.
    4. Mansour Aghababaei Jazi & Geoff Jones & Chin-Diew Lai, 2012. "First-order integer valued AR processes with zero inflated poisson innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(6), pages 954-963, November.
    5. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    6. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    7. Miroslav M. Ristić & Aleksandar S. Nastić & Ana V. Miletić Ilić, 2013. "A geometric time series model with dependent Bernoulli counting series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 466-476, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    2. Wagner Barreto-Souza & Sokol Ndreca & Rodrigo B. Silva & Roger W. C. Silva, 2023. "Non-linear INAR(1) processes under an alternative geometric thinning operator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 695-725, June.
    3. Raju Maiti & Atanu Biswas & Bibhas Chakraborty, 2018. "Modelling of low count heavy tailed time series data consisting large number of zeros and ones," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 407-435, August.
    4. Tobias A. Möller & Christian H. Weiß & Hee-Young Kim & Andrei Sirchenko, 2018. "Modeling Zero Inflation in Count Data Time Series with Bounded Support," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 589-609, June.
    5. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    2. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    3. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    4. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    5. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
    6. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.
    7. Borges, Patrick & Molinares, Fabio Fajardo & Bourguignon, Marcelo, 2016. "A geometric time series model with inflated-parameter Bernoulli counting series," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 264-272.
    8. Marcelo Bourguignon, 2016. "Poisson–geometric INAR(1) process for modeling count time series with overdispersion," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 176-192, August.
    9. Raju Maiti & Atanu Biswas & Bibhas Chakraborty, 2018. "Modelling of low count heavy tailed time series data consisting large number of zeros and ones," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 407-435, August.
    10. Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
    11. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.
    12. Jentsch, Carsten & Weiß, Christian, 2017. "Bootstrapping INAR models," Working Papers 17-02, University of Mannheim, Department of Economics.
    13. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    14. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    15. Subhankar Chattopadhyay & Raju Maiti & Samarjit Das & Atanu Biswas, 2022. "Change‐point analysis through integer‐valued autoregressive process with application to some COVID‐19 data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 4-34, February.
    16. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    17. Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
    18. Sebastian Schweer & Christian H. Weiß, 2016. "Testing for Poisson arrivals in INAR(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 503-524, September.
    19. T M Christensen & A. S. Hurn & K A Lindsay, 2008. "Discrete time-series models when counts are unobservable," NCER Working Paper Series 35, National Centre for Econometric Research.
    20. Sebastian Schweer, 2016. "A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 77-98, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:36:y:2015:i:6:p:839-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.