Advanced Search
MyIDEAS: Login to save this article or follow this journal

Combining time series models for forecasting

Contents:

Author Info

  • Zou, Hui
  • Yang, Yuhong
Registered author(s):

    Abstract

    No abstract is available for this item.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V92-48DXWDH-2/2/d810810212893625bee264350b1b61f6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 20 (2004)
    Issue (Month): 1 ()
    Pages: 69-84

    as in new window
    Handle: RePEc:eee:intfor:v:20:y:2004:i:1:p:69-84

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/ijforecast

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    2. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
    3. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(01), pages 176-222, February.
    4. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
    5. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    6. Yang Y., 2001. "Adaptive Regression by Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 574-588, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Amiri, Arshia & Bakhshoodeh, Mohamad & Najafi, Bahaeddin, 2011. "Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method," MPRA Paper 34093, University Library of Munich, Germany.
    2. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
    3. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    4. Ron Bird & Richard Gerlach, 2006. "A Bayesian Model Averaging Approach to Enhance Value Investment," International Journal of Business and Economics, College of Business, and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 5(2), pages 111-127, August.
    5. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    6. Altavilla, Carlo & Ciccarelli, Matteo, 2007. "Inflation Forecasts, monetary policy and unemployment dynamics: evidence from the US and the euro area," Working Paper Series 0725, European Central Bank.
    7. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    8. Mishra, G. C. & Singh, A., 2013. "A Study on Forecasting Prices of Groundnut Oil in Delhi by Arima Methodology and Artificial Neural Networks," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(3), September.
    9. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    10. Ana Angulo & F. Trívez, 2010. "The impact of spatial elements on the forecasting of Spanish labour series," Journal of Geographical Systems, Springer, vol. 12(2), pages 155-174, June.
    11. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    12. D'Elia, Enrico, 2010. "Predictions vs preliminary sample estimates," MPRA Paper 36070, University Library of Munich, Germany.
    13. Andreas Lindemann & Christian Dunis & Paulo Lisboa, 2005. "Probability distributions and leveraged trading strategies: an application of Gaussian mixture models to the Morgan Stanley Technology Index Tracking Fund," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 459-474.
    14. Zhang, Xinyu & Lu, Zudi & Zou, Guohua, 2013. "Adaptively combined forecasting for discrete response time series," Journal of Econometrics, Elsevier, vol. 176(1), pages 80-91.
    15. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    16. Liu, Chu-An & Kuo, Biing-Shen, 2014. "Model Averaging in Predictive Regressions," MPRA Paper 54198, University Library of Munich, Germany.
    17. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
    18. Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
    19. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    20. Altavilla, Carlo & Ciccarelli, Matteo, 2007. "Information combination and forecast (st)ability evidence from vintages of time-series data," Working Paper Series 0846, European Central Bank.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:20:y:2004:i:1:p:69-84. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.