Advanced Search
MyIDEAS: Login

Using quantile regression for rate-making


Author Info

  • Kudryavtsev, Andrey A.
Registered author(s):


    Regression models are popular tools for rate-making in the framework of heterogeneous insurance portfolios; however, the traditional regression methods have some disadvantages particularly their sensitivity to the assumptions which significantly restrict the area of their applications. This paper is devoted to an alternative approach-quantile regression. It is free of some disadvantages of the traditional models. The quality of estimators for the approach described is approximately the same as or sometimes better than that for the traditional regression methods. Moreover, the quantile regression is consistent with the idea of using the distribution quantile for rate-making. This paper provides detailed comparisons between the approaches and it gives the practical example of using the new methodology.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 45 (2009)
    Issue (Month): 2 (October)
    Pages: 296-304

    as in new window
    Handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:296-304

    Contact details of provider:
    Web page:

    Related research

    Keywords: IB42 IM30 Regression models Generalized linear models Quantile regression Confidence band Rate-making Quantile approach to the net premium rate-making;

    Find related papers by JEL classification:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, December.
    3. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, December.
    4. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    5. Rousseeuw, P. & Daniels, B. & Leroy, A., 1984. "Applying robust regression to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 3(1), pages 67-72, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Pitselis, Georgios, 2013. "Quantile credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 477-489.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:296-304. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.