IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.01798.html
   My bibliography  Save this paper

Risk Loadings in Classification Ratemaking

Author

Listed:
  • Liang Yang
  • Zhengxiao Li
  • Shengwang Meng

Abstract

The risk premium of a policy is the sum of the pure premium and the risk loading. In the classification ratemaking process, generalized linear models are usually used to calculate pure premiums, and various premium principles are applied to derive the risk loadings. No matter which premium principle is used, some risk loading parameters should be given in advance subjectively. To overcome this subjective problem and calculate the risk premium more reasonably and objectively, we propose a top-down method to calculate these risk loading parameters. First, we implement the bootstrap method to calculate the total risk premium of the portfolio. Then, under the constraint that the portfolio's total risk premium should equal the sum of the risk premiums of each policy, the risk loading parameters are determined. During this process, besides using generalized linear models, three kinds of quantile regression models are also applied, namely, traditional quantile regression model, fully parametric quantile regression model, and quantile regression model with coefficient functions. The empirical result shows that the risk premiums calculated by the method proposed in this study can reasonably differentiate the heterogeneity of different risk classes.

Suggested Citation

  • Liang Yang & Zhengxiao Li & Shengwang Meng, 2020. "Risk Loadings in Classification Ratemaking," Papers 2002.01798, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2002.01798
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.01798
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Fabio Baione & Davide Biancalana, 2019. "An Individual Risk Model for Premium Calculation Based on Quantile: A Comparison between Generalized Linear Models and Quantile Regression," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(4), pages 573-590, October.
    4. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    5. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    6. Frees, Edward W. & Jin, Xiaoli & Lin, Xiao, 2013. "Actuarial Applications of Multivariate Two-Part Regression Models," Annals of Actuarial Science, Cambridge University Press, vol. 7(2), pages 258-287, September.
    7. Kudryavtsev, Andrey A., 2009. "Using quantile regression for rate-making," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 296-304, October.
    8. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    9. Dong, Alice X.D. & Chan, Jennifer S.K. & Peters, Gareth W., 2015. "Risk Margin Quantile Function Via Parametric And Non-Parametric Bayesian Approaches," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 503-550, September.
    10. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149.
    11. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    12. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    13. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    14. Paolo Frumento & Matteo Bottai, 2016. "Parametric modeling of quantile regression coefficient functions," Biometrics, The International Biometric Society, vol. 72(1), pages 74-84, March.
    15. Frumento, Paolo & Bottai, Matteo, 2017. "An estimating equation for censored and truncated quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 53-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    2. Chan Jennifer So Kuen & Nitithumbundit Thanakorn & Peiris Shelton & Ng Kok-Haur, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.
    3. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    4. Fuzi, Mohd Fadzli Mohd & Jemain, Abdul Aziz & Ismail, Noriszura, 2016. "Bayesian quantile regression model for claim count data," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 124-137.
    5. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    6. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    7. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    8. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    9. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    10. Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
    11. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    12. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    13. Kuk, Anthony Y.C., 2017. "Function compositional adjustments of conditional quantile curves," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 281-293.
    14. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    15. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    16. E. Fusco & R. Benedetti & F. Vidoli, 2023. "Stochastic frontier estimation through parametric modelling of quantile regression coefficients," Empirical Economics, Springer, vol. 64(2), pages 869-896, February.
    17. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    18. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    19. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    20. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.01798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.