IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v97y2016icp127-143.html
   My bibliography  Save this article

Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain

Author

Listed:
  • Pérez-García, Julián
  • Moral-Carcedo, Julián

Abstract

Proper planning for the dimensions of an electricity production and transmission system requires the availability of medium- and long-term electricity demand projections that are sufficiently reliable. Generally, these projections are directly linked to the estimated growth for the whole real GDP (gross domestic product), although an in-depth historical evolution of this demand, as that given in this article, advises the explicit consideration of several determinants. The aim of this paper is to present an alternative analysis of the demand for electricity based on a simple growth rate decomposition scheme that allows the key factors behind this evolution to be identified. It is possible, taking this scheme as a starting point, to develop a long-term forecasting model to obtain projections of electricity demand given the expected evolution of the key factors. The proposed methodology is illustrated using Spain as a case study to obtain demand projections till 2030.

Suggested Citation

  • Pérez-García, Julián & Moral-Carcedo, Julián, 2016. "Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain," Energy, Elsevier, vol. 97(C), pages 127-143.
  • Handle: RePEc:eee:energy:v:97:y:2016:i:c:p:127-143
    DOI: 10.1016/j.energy.2015.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    2. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    3. Zachariadis, Theodoros & Pashourtidou, Nicoletta, 2007. "An empirical analysis of electricity consumption in Cyprus," Energy Economics, Elsevier, vol. 29(2), pages 183-198, March.
    4. Yamaguchi, Keiko, 2007. "Estimating energy elasticity with structural changes in Japan," Energy Economics, Elsevier, vol. 29(6), pages 1254-1259, November.
    5. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    6. Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand," Working Papers 1409, Department of Economics, University of Missouri.
    7. Hondroyiannis, George, 2004. "Estimating residential demand for electricity in Greece," Energy Economics, Elsevier, vol. 26(3), pages 319-334, May.
    8. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    9. Yee Yan, Yuk, 1998. "Climate and residential electricity consumption in Hong Kong," Energy, Elsevier, vol. 23(1), pages 17-20.
    10. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    11. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
    12. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    13. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    14. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    15. Zachariadis, Theodoros, 2007. "Exploring the relationship between energy use and economic growth with bivariate models: New evidence from G-7 countries," Energy Economics, Elsevier, vol. 29(6), pages 1233-1253, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julián Pérez-García & Julián Moral-Carcedo, 2017. "Why Electricity Demand Is Highly Income-Elastic in Spain: A Cross-Country Comparison Based on an Index-Decomposition Analysis," Energies, MDPI, vol. 10(3), pages 1-20, March.
    2. Daniel Morais de Souza & Rogerio Silva de Mattos & Alexandre Zanini, 2022. "Estimating Elasticities for the Residential Demand of Electricity in Brazil Using Cointegration Models," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 315-324, March.
    3. Rosas-Flores, Jorge Alberto, 2017. "Elements for the development of public policies in the residential sector of Mexico based in the Energy Reform and the Energy Transition law," Energy Policy, Elsevier, vol. 104(C), pages 253-264.
    4. Fukushige, Mototsugu & Yamawaki, Hiroshige, 2015. "The relationship between an electricity supply ceiling and economic growth: An application of disequilibrium modeling to Taiwan," Journal of Asian Economics, Elsevier, vol. 36(C), pages 14-23.
    5. Yasunobu Wakashiro, 2019. "Estimating price elasticity of demand for electricity: the case of Japanese manufacturing industry," International Journal of Economic Policy Studies, Springer, vol. 13(1), pages 173-191, January.
    6. Haitao Yin & Hui Zhou & Kai Zhu, 2016. "Long- and short-run elasticities of residential electricity consumption in China: a partial adjustment model with panel data," Applied Economics, Taylor & Francis Journals, vol. 48(28), pages 2587-2599, June.
    7. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    8. Nakajima, Tadahiro & Hamori, Shigeyuki, 2010. "Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States," Energy Policy, Elsevier, vol. 38(5), pages 2470-2476, May.
    9. Akihiro Otsuka, 2019. "Natural disasters and electricity consumption behavior: a case study of the 2011 Great East Japan Earthquake," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 887-910, October.
    10. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    11. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke & Karunarathna, Muditha, 2019. "Household demand for electricity: The role of market distortions and prices in competition policy," Energy Policy, Elsevier, vol. 134(C).
    12. Balarama, Hemawathy & Islam, Asad & Kim, Jun Sung & Wang, Liang Choon, 2020. "Price elasticities of residential electricity demand: Estimates from household panel data in Bangladesh," Energy Economics, Elsevier, vol. 92(C).
    13. Durmaz, Tunç & Pommeret, Aude & Tastan, Hüseyin, 2020. "Estimation of residential electricity demand in Hong Kong under electricity charge subsidies," Energy Economics, Elsevier, vol. 88(C).
    14. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    15. Casarin, Ariel A. & Delfino, Maria Eugenia, 2011. "Price freezes, durables, and residential electricity demand. Evidence from Greater Buenos Aires," Energy Economics, Elsevier, vol. 33(5), pages 859-869, September.
    16. Jamil, Faisal & Ahmad, Eatzaz, 2011. "Income and price elasticities of electricity demand: Aggregate and sector-wise analyses," Energy Policy, Elsevier, vol. 39(9), pages 5519-5527, September.
    17. Desiderio Romero-Jordán & Pablo del Río & Cristina Peñasco, 2014. "Household electricity demand in Spanish regions. Public policy implications," Working Papers 2014/24, Institut d'Economia de Barcelona (IEB).
    18. Tiwari, Aviral Kumar & Menegaki, Angeliki N., 2019. "A time varying approach on the price elasticity of electricity in India during 1975–2013," Energy, Elsevier, vol. 183(C), pages 385-397.
    19. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    20. Theologos Dergiades & Lefteris Tsoulfidis, 2011. "Revisiting residential demand for electricity in Greece: new evidence from the ARDL approach to cointegration analysis," Empirical Economics, Springer, vol. 41(2), pages 511-531, October.

    More about this item

    Keywords

    Long-term electricity demand; Electricity demand forecasting; Index decomposition method;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • L - Industrial Organization
    • L5 - Industrial Organization - - Regulation and Industrial Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:97:y:2016:i:c:p:127-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.