IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp551-559.html
   My bibliography  Save this article

Decomposing the drivers of aviation fuel demand using simultaneous equation models

Author

Listed:
  • Wadud, Zia

Abstract

Decomposition analysis is a widely used technique in energy analysis, whereby the growth in energy demand is attributed to different components. In this paper the decomposition analysis is extended in a system econometric modelling framework in order to understand the drivers of each of the components in the decomposition analysis. The growth in aviation fuel demand is decomposed into five components: population, passenger per capita, distances per passenger, load factor and fuel efficiency, and then seemingly unrelated regression methods is applied in order to model each of these. Results show that the fuel demand in the US air transport sector most closely follows the trend of passenger per capita. The growth in fuel demand is slowed by improvements in fuel efficiency and usage efficiency (load factor). Increases in income affects both passengers per capita and distances per passenger. However, increases in travel costs have opposite effects on passenger per capita (decreases) and distance per passenger (increases). Increases in jet fuel prices improves both the load factor and fuel efficiency.

Suggested Citation

  • Wadud, Zia, 2015. "Decomposing the drivers of aviation fuel demand using simultaneous equation models," Energy, Elsevier, vol. 83(C), pages 551-559.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:551-559
    DOI: 10.1016/j.energy.2015.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy J. Vogelsang, 1999. "Two Simple Procedures for Testing for a Unit Root When There are Additive Outliers," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(2), pages 237-252, March.
    2. Kveiborg, Ole & Fosgerau, Mogens, 2007. "Decomposing the decoupling of Danish road freight traffic growth and economic growth," Transport Policy, Elsevier, vol. 14(1), pages 39-48, January.
    3. Hendry, David F, 1986. "Econometric Modelling with Cointegrated Variables: An Overview," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 201-212, August.
    4. Banerjee, Anindya, et al, 1986. "Exploring Equilibrium Relationships in Econometrics through Static Models: Some Monte Carlo Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 253-277, August.
    5. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    6. Bhadra, Dipasis & Kee, Jacqueline, 2008. "Structure and dynamics of the core US air travel markets: A basic empirical analysis of domestic passenger demand," Journal of Air Transport Management, Elsevier, vol. 14(1), pages 27-39.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    9. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    10. Wadud, Zia, 2014. "The asymmetric effects of income and fuel price on air transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 92-102.
    11. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    12. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    13. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    14. Wadud, Zia, 2015. "Imperfect reversibility of air transport demand: Effects of air fare, fuel prices and price transmission," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 16-26.
    15. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, Farzana & Rahman, Md. Mahmudur, 2023. "Analyzing service quality of domestic airlines in an emerging country- Bangladesh by structural equation models," Journal of Air Transport Management, Elsevier, vol. 107(C).
    2. Wadud, Zia & Royston, Sarah & Selby, Jan, 2019. "Modelling energy demand from higher education institutions: A case study of the UK," Applied Energy, Elsevier, vol. 233, pages 816-826.
    3. Miyoshi, Chikage & Fukui, Hideki, 2018. "Measuring the rebound effects in air transport: The impact of jet fuel prices and air carriers’ fuel efficiency improvement of the European airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 71-84.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    2. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    3. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    4. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    5. Wadud, Zia, 2015. "Imperfect reversibility of air transport demand: Effects of air fare, fuel prices and price transmission," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 16-26.
    6. GUPTA Monika & SINGH Sanjay, 2016. "Factorizing The Changes In Co2 Emissions From Indian Road Passenger Transport: A Decomposition Analysis," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 11(3), pages 67-83, December.
    7. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    8. Tyrväinen, Timo, 1991. "Unions, wages and employment: evidence from Finland," Bank of Finland Research Discussion Papers 16/1991, Bank of Finland.
    9. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    10. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    11. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    12. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    13. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    14. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    15. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    16. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    17. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    18. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    19. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    20. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:551-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.