IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp758-768.html
   My bibliography  Save this article

Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs

Author

Listed:
  • Adil Zainal, Omer
  • Yumrutaş, Recep

Abstract

In this study, periodic solution of unsteady heat transfer problem for building walls and flat roofs is firstly used to find the CLTD (cooling load temperature difference) values for these building elements. The solution is obtained by applying CFFT (complex finite fourier transform) technique. The solution of periodic nature is a novel approach in applying CFFT technique for calculating CLTD values for these elements. A computational procedure based on the periodic solution is developed, and a program in Matlab is prepared for the numerical calculations. The CLTD values are compared with those values given in ASHRAE handbooks. There is a considerable agreement between computed results and CLTD values provided in ASHRAE handbooks for the selected walls and roofs. It is obtained that differences in CLTD values for Roof 2, Roof 13 and Wall 3 selected for main directions change between 0 and 2.42 °C, 0 and 0.94 °C, and 1.8 and 4.3 °C, respectively. It is found that differences between estimated heat gain values and those given in ASHRAE by RTS (radiant time series) method change between 0 and 5 W/m2. The numerical calculations are validated with ASHRAE standard data.

Suggested Citation

  • Adil Zainal, Omer & Yumrutaş, Recep, 2015. "Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs," Energy, Elsevier, vol. 82(C), pages 758-768.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:758-768
    DOI: 10.1016/j.energy.2015.01.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaska, Önder & Yumrutas, Recep & Arpa, Orhan, 2009. "Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey," Applied Energy, Elsevier, vol. 86(5), pages 737-747, May.
    2. Kaşka, Ö. & Yumrutaş, R., 2008. "Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs," Energy, Elsevier, vol. 33(12), pages 1816-1823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    2. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    3. Moazeni, Faegheh & Khazaei, Javad, 2020. "Dynamic economic dispatch of islanded water-energy microgrids with smart building thermal energy management system," Applied Energy, Elsevier, vol. 276(C).
    4. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "The Development of ARIMA Models for the Clear Sky Beam and Diffuse Optical Depths for HVAC Systems Design Using RTSM: A Case Study of the Umlazi Township Area, South Africa," Sustainability, MDPI, vol. 14(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    2. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    3. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    4. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    5. Edson Manyumbu & Viktoria Martin & Justin Ningwei Chiu, 2023. "Prospective PCM–Desiccant Combination with Solar-Assisted Regeneration for the Indoor Comfort Control of an Office in a Warm and Humid Climate—A Numerical Study," Energies, MDPI, vol. 16(14), pages 1-14, July.
    6. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    7. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    8. Zhang, Xueyan & Liu, Xin & Chen, Bin & Zhao, Joe R. & Sang, Yizhou, 2019. "Numerical simulation of heat transfer process of the raised floor heating system integrated with a burning cave," Renewable Energy, Elsevier, vol. 132(C), pages 1104-1111.
    9. Torabi, Mohsen & Zhang, Kaili, 2014. "Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation," Energy, Elsevier, vol. 73(C), pages 484-496.
    10. Fathipour, Reza & Hadidi, Amin, 2017. "Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran," Energy, Elsevier, vol. 134(C), pages 167-180.
    11. Cristina Carletti & Cristina Piselli & Fabio Sciurpi, 2024. "Are Design Strategies for High-Performance Buildings Really Effective? Results from One Year of Monitoring of Indoor Microclimate and Envelope Performance of a Newly Built nZEB House in Central Italy," Energies, MDPI, vol. 17(3), pages 1-23, February.
    12. Jorge Lucero-Álvarez & Norma A. Rodríguez-Muñoz & Ignacio R. Martín-Domínguez, 2016. "The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico," Sustainability, MDPI, vol. 8(7), pages 1-19, June.
    13. Zingre, Kishor T. & Wan, Man Pun & Yang, Xingguo, 2015. "A new RTTV (roof thermal transfer value) calculation method for cool roofs," Energy, Elsevier, vol. 81(C), pages 222-232.
    14. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:758-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.