IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v73y2014icp484-496.html
   My bibliography  Save this article

Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation

Author

Listed:
  • Torabi, Mohsen
  • Zhang, Kaili

Abstract

Entropy generation rate is directly related to exergy destruction and is therefore to useful energy. This study investigates temperature distribution and local and total entropy generation rates within a composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation. The internal heat generation is considered constant but different for inner and outer materials. Two cases are examined: (a) constant temperature boundary conditions and (b) asymmetric convective cooling boundary conditions for inside and outside surfaces. The general solution for the system of equations is analytically found, and constant parameters are numerically calculated for each case. Moreover, complete analytical solution is performed for cases with temperature-independent thermal conductivities. For the first case, temperature distribution and entropy generation depend on eight parameters, and for the second case, the reported data depend on ten thermophysical parameters. After verifying the solution procedure, a comprehensive study is performed for temperature distribution and total entropy generation rate with various values for different parameters. Thus, the new proposed data and graphs in this study provide a remarkable tool and at the same time retain suitable simplicity for engineers. The results should be useful in a number of engineering applications and considerably ease the processes of choosing geometrical parameters together with environment temperature or heat transfer coefficient when dealing with composite hollow cylinders with two-layer materials for less entropy generation, that is, less exergy destruction.

Suggested Citation

  • Torabi, Mohsen & Zhang, Kaili, 2014. "Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation," Energy, Elsevier, vol. 73(C), pages 484-496.
  • Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:484-496
    DOI: 10.1016/j.energy.2014.06.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214007397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.06.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    2. Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
    3. Aziz, A. & Khan, W.A., 2011. "Classical and minimum entropy generation analyses for steady state conduction with temperature dependent thermal conductivity and asymmetric thermal boundary conditions: Regular and functionally grade," Energy, Elsevier, vol. 36(10), pages 6195-6207.
    4. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    5. Amini-Manesh, Navid & Basu, Saptarshi & Kumar, Ranganathan, 2011. "Modeling of a reacting nanofilm on a composite substrate," Energy, Elsevier, vol. 36(3), pages 1688-1697.
    6. Fratzscher, Wolfgang & Stephan, Karl, 2003. "Waste energy usage and entropy economy," Energy, Elsevier, vol. 28(13), pages 1281-1302.
    7. Kaşka, Ö. & Yumrutaş, R., 2008. "Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs," Energy, Elsevier, vol. 33(12), pages 1816-1823.
    8. Lucia, Umberto, 2013. "Entropy and exergy in irreversible renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 559-564.
    9. Kolenda, Z. & Donizak, J. & Hubert, J., 2004. "On the minimum entropy production in steady state heat conduction processes," Energy, Elsevier, vol. 29(12), pages 2441-2460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    2. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2015. "Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model," Energy, Elsevier, vol. 82(C), pages 922-938.
    3. Torabi, Mohsen & Zhang, Kaili, 2015. "Temperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls," Energy, Elsevier, vol. 87(C), pages 540-554.
    4. Chee, Yi Shen & Ting, Tiew Wei & Hung, Yew Mun, 2015. "Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries," Energy, Elsevier, vol. 89(C), pages 382-401.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    2. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    3. Torabi, Mohsen & Zhang, Kaili, 2015. "Temperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls," Energy, Elsevier, vol. 87(C), pages 540-554.
    4. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    5. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2015. "Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model," Energy, Elsevier, vol. 82(C), pages 922-938.
    6. Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
    7. Adil Zainal, Omer & Yumrutaş, Recep, 2015. "Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs," Energy, Elsevier, vol. 82(C), pages 758-768.
    8. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    9. Lucia, Umberto, 2015. "Quanta and entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 115-121.
    10. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    11. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    12. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    13. Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
    14. Lucia, Umberto, 2013. "Carnot efficiency: Why?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3513-3517.
    15. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    16. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    17. Kundu, Balaram & Lee, Kwan-Soo, 2014. "Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects," Energy, Elsevier, vol. 76(C), pages 733-748.
    18. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.
    19. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    20. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:73:y:2014:i:c:p:484-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.