IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp3-14.html
   My bibliography  Save this article

Three-dimensional, transient, nonisothermal model of all-vanadium redox flow batteries

Author

Listed:
  • Oh, Kyeongmin
  • Yoo, Haneul
  • Ko, Johan
  • Won, Seongyeon
  • Ju, Hyunchul

Abstract

A three-dimensional (3-D), transient, nonisothermal model of all-vanadium redox flow batteries (VRFBs) is developed by rigorously accounting for the electrochemical reactions of four types of vanadium ions (V2+, V3+, VO2+, and VO2+) and the resulting mass and heat transport processes. Particular emphasis is placed on analyzing various heat generation mechanisms, including irreversible and reversible heat generation due to vanadium redox reactions and joule heating arising from the solid electrode and electrolyte ionic resistances. The 3-D model is validated against voltage evolution curves measured under charging and discharging processes. The model predictions compare well with the experimental data over a wide range of state of charge (SOCs), and further reveal key electrochemical and transport phenomena inside VRFBs through multidimensional contours of solid electrode/electrolyte potentials, species concentrations, and temperatures. This full 3-D comprehensive VRFB model can be applied to realistic multicell stacks to determine the optimal design and operating conditions.

Suggested Citation

  • Oh, Kyeongmin & Yoo, Haneul & Ko, Johan & Won, Seongyeon & Ju, Hyunchul, 2015. "Three-dimensional, transient, nonisothermal model of all-vanadium redox flow batteries," Energy, Elsevier, vol. 81(C), pages 3-14.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:3-14
    DOI: 10.1016/j.energy.2014.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214005696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    2. Huang, Ke-Long & Li, Xiao-gang & Liu, Su-qin & Tan, Ning & Chen, Li-quan, 2008. "Research progress of vanadium redox flow battery for energy storage in China," Renewable Energy, Elsevier, vol. 33(2), pages 186-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
    2. Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
    3. Longchun Zhong & Fengming Chu, 2023. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    4. Trovò, Andrea & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2021. "A validated dynamical model of a kW-class Vanadium Redox Flow Battery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 66-77.
    5. Jienkulsawad, Prathak & Jirabovornwisut, Tossaporn & Chen, Yong-Song & Arpornwichanop, Amornchai, 2023. "Effect of battery material and operation on dynamic performance of a vanadium redox flow battery under electrolyte imbalance conditions," Energy, Elsevier, vol. 268(C).
    6. Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
    7. Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
    8. Yoon, Sang Jun & Kim, Sangwon & Kim, Dong Kyu, 2019. "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery," Energy, Elsevier, vol. 172(C), pages 26-35.
    9. Pan, Jianxin & Huang, Mianyan & Li, Xue & Wang, Shubo & Li, Weihua & Ma, Tao & Xie, Xiaofeng & Ramani, Vijay, 2016. "The performance of all vanadium redox flow batteries at below-ambient temperatures," Energy, Elsevier, vol. 107(C), pages 784-790.
    10. He, Qijiao & Li, Zheng & Zhao, Dongqi & Yu, Jie & Tan, Peng & Guo, Meiting & Liao, Tianjun & Zhao, Tianshou & Ni, Meng, 2023. "A 3D modelling study on all vanadium redox flow battery at various operating temperatures," Energy, Elsevier, vol. 282(C).
    11. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    12. Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
    13. Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
    14. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    3. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    4. Chunjuan Shen & Sichuan Xu & Lei Pan & Yuan Gao, 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(21), pages 1-11, November.
    5. Muqing Ding & Tao Liu & Yimin Zhang & Hong Liu & Dong Pan & Liming Chen, 2021. "Physicochemical and Electrochemical Characterization of Vanadium Electrolyte Prepared with Different Grades of V 2 O 5 Raw Materials," Energies, MDPI, vol. 14(18), pages 1-15, September.
    6. Maximilian Schmitz & Matthias Bahr & Sönke Gößling & Stefan Pischinger, 2023. "Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods," Energies, MDPI, vol. 16(18), pages 1-26, September.
    7. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    8. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Chakrabarti, Mohammed Harun & Mjalli, Farouq Sabri & AlNashef, Inas Muen & Hashim, Mohd. Ali & Hussain, Mohd. Azlan & Bahadori, Laleh & Low, Chee Tong John, 2014. "Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 254-270.
    10. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    11. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
    12. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    13. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    14. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    15. Xu, Q. & Zhao, T.S. & Zhang, C., 2014. "Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 130(C), pages 139-147.
    16. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    17. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    18. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    19. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    20. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:3-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.