IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v63y2013icp168-179.html
   My bibliography  Save this article

Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design

Author

Listed:
  • Ristimäki, Miro
  • Säynäjoki, Antti
  • Heinonen, Jukka
  • Junnila, Seppo

Abstract

Due to the growing threat of climate change, we are challenged to find improved assessment practises to recognize solutions for sustainable urban development. The focus of the study is on the life cycle design of a district energy system for a new residential development in Finland. This study analyses LCC (life cycle costs) and carbon emissions (LCA (life cycle assessment)), i.e., the “viability” of different energy systems through a methodological life cycle framework. By combining LCC and LCA, a LCM (life cycle management) perspective is portrayed to support decision-making on a long-term basis. The comparable energy design options analysed are (1) district heating (reference design), (2) district heating with building integrated photovoltaic panels, (3) ground source heat pump, and (4) ground source heat pump with building-integrated photovoltaic panels. The results show that the design option with the highest initial investment (4) is in fact the most viable from a life cycle perspective. This study further strengthens the connection between cost savings and carbon emissions reduction in a life cycle context. Thus, by implementing LCC and LCA analysis in an early design phase, justified economic and environmental design decisions can be identified to develop more sustainable urban areas.

Suggested Citation

  • Ristimäki, Miro & Säynäjoki, Antti & Heinonen, Jukka & Junnila, Seppo, 2013. "Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design," Energy, Elsevier, vol. 63(C), pages 168-179.
  • Handle: RePEc:eee:energy:v:63:y:2013:i:c:p:168-179
    DOI: 10.1016/j.energy.2013.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graham Treloar, 1997. "Extracting Embodied Energy Paths from Input-Output Tables: Towards an Input-Output-based Hybrid Energy Analysis Method," Economic Systems Research, Taylor & Francis Journals, vol. 9(4), pages 375-391.
    2. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    3. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
    4. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    5. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    6. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    7. G. J. Treloar & P. E. D. Love & O. O. Faniran & U. Iyer-Raniga, 2000. "A hybrid life cycle assessment method for construction," Construction Management and Economics, Taylor & Francis Journals, vol. 18(1), pages 5-9.
    8. Raugei, Marco & Frankl, Paolo, 2009. "Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks," Energy, Elsevier, vol. 34(3), pages 392-399.
    9. Greening, Benjamin & Azapagic, Adisa, 2012. "Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK," Energy, Elsevier, vol. 39(1), pages 205-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    2. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    3. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    4. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    5. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    7. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    8. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Marszal, Anna Joanna & Heiselberg, Per & Lund Jensen, Rasmus & Nørgaard, Jesper, 2012. "On-site or off-site renewable energy supply options? Life cycle cost analysis of a Net Zero Energy Building in Denmark," Renewable Energy, Elsevier, vol. 44(C), pages 154-165.
    10. Kovacic, Iva & Zoller, Veronika, 2015. "Building life cycle optimization tools for early design phases," Energy, Elsevier, vol. 92(P3), pages 409-419.
    11. Ming Hu, 2019. "Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    12. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    13. Fokaides, Paris A. & Christoforou, Elias A. & Kalogirou, Soteris A., 2014. "Legislation driven scenarios based on recent construction advancements towards the achievement of nearly zero energy dwellings in the southern European country of Cyprus," Energy, Elsevier, vol. 66(C), pages 588-597.
    14. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    15. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    16. Ranjita Singh & Philip Walsh & Christina Mazza, 2019. "Sustainable Housing: Understanding the Barriers to Adopting Net Zero Energy Homes in Ontario, Canada," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    17. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    18. Gibbons, Laurence & Javed, Saqib, 2022. "A review of HVAC solution-sets and energy performace of nearly zero-energy multi-story apartment buildings in Nordic climates by statistical analysis of environmental performance certificates and lite," Energy, Elsevier, vol. 238(PA).
    19. Wilby, Mark Richard & Rodríguez González, Ana Belén & Vinagre Díaz, Juan José, 2014. "Empirical and dynamic primary energy factors," Energy, Elsevier, vol. 73(C), pages 771-779.
    20. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:63:y:2013:i:c:p:168-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.