IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp344-360.html
   My bibliography  Save this article

Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources

Author

Listed:
  • Beretta, Gian Paolo
  • Iora, Paolo
  • Ghoniem, Ahmed F.

Abstract

The interest in hybrid power production facilities, based on the integration of renewable resources and conventional fossil fuels, is rapidly rising. The question of what fraction of the electricity produced in such facilities is to be considered as produced from the renewable resources is still being debated. We show that the conventional Fossil-Centered-Solar-Share method and the Exergy-based method lead to unfair allocations that may result in unfair access to subsidies granted to renewable electricity. We propose a more balanced Single-Resource-Separate-Production-Reference (SRSPR) allocation method based on prescribed reference partial primary energy factors chosen by some authority to represent reference efficiencies of non-hybrid power production from the same renewable and fossil resources used by the hybrid facility. We then show that as hybridization gains higher fractions of the local energy market, the SRSPR method may still result in somewhat unfair allocations leading to local market distortions. To overcome this drawback, we formulate a more consistent Self-Tuned-Average-Local-Productions-Reference (STALPR) allocation method whereby the electricity allocation fractions are based on the average partial primary energy factors of the actual energy portfolio of the local area that includes the hybrid plant itself. Results are illustrated with reference to a solar-integrated combined cycle facility.

Suggested Citation

  • Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2013. "Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources," Energy, Elsevier, vol. 60(C), pages 344-360.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:344-360
    DOI: 10.1016/j.energy.2013.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
    2. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    3. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    4. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2012. "Novel approach for fair allocation of primary energy consumption among cogenerated energy-intensive products based on the actual local area production scenario," Energy, Elsevier, vol. 44(1), pages 1107-1120.
    5. Horn, Mechthild & Führing, Heiner & Rheinländer, Jürgen, 2004. "Economic analysis of integrated solar combined cycle power plants," Energy, Elsevier, vol. 29(5), pages 935-945.
    6. Sheu, Elysia J. & Mitsos, Alexander, 2013. "Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle," Energy, Elsevier, vol. 51(C), pages 193-202.
    7. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    2. Invernizzi, Costante M. & Iora, Paolo, 2016. "The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview," Energy, Elsevier, vol. 105(C), pages 2-15.
    3. Jun Zhao & Kun Yang, 2020. "Analysis of CO 2 Abatement Cost of Solar Energy Integration in a Solar-Aided Coal-Fired Power Generation System in China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    4. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    5. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    6. Jun Zhao & Kun Yang, 2020. "Allocating Output Electricity in a Solar-Aided Coal-Fired Power Generation System and Assessing Its CO 2 Emission Reductions in China," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    7. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: Comparative analyses," Energy, Elsevier, vol. 119(C), pages 1230-1246.
    8. Iora, Paolo & Beretta, Gian Paolo & Ghoniem, Ahmed F., 2019. "Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle," Energy, Elsevier, vol. 173(C), pages 893-901.
    9. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    10. Manzolini, Giampaolo & Lucca, Gaia & Binotti, Marco & Lozza, Giovanni, 2021. "A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants," Renewable Energy, Elsevier, vol. 177(C), pages 807-822.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    2. Bernardos, Eva & López, Ignacio & Rodríguez, Javier & Abánades, Alberto, 2013. "Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles," Energy Policy, Elsevier, vol. 62(C), pages 99-106.
    3. Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.
    4. Zhang, Guoqiang & Li, Yuanyuan & Zhang, Na, 2017. "Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system," Energy, Elsevier, vol. 128(C), pages 152-162.
    5. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    6. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    7. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Zhao, Jin & Yang, Yongping, 2019. "Stabilizing operation of a solar aided power generation (SAPG) plant by adjusting the burners’ tilt and attemperation flows in the boiler," Energy, Elsevier, vol. 173(C), pages 1208-1220.
    8. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Yang, Yongping & Wang, Lu & Zhao, Jin, 2019. "Performance maximization of a solar aided power generation (SAPG) plant with a direct air-cooled condenser in power-boosting mode," Energy, Elsevier, vol. 175(C), pages 891-899.
    9. Li, Yuanyuan & Zhang, Na & Cai, Ruixian & Yang, Yongping, 2013. "Performance analysis of a near zero CO2 emission solar hybrid power generation system," Applied Energy, Elsevier, vol. 112(C), pages 727-736.
    10. Zuxian Zhang & Liqiang Duan & Zhen Wang & Yujie Ren, 2023. "Integration Optimization of Integrated Solar Combined Cycle (ISCC) System Based on System/Solar Photoelectric Efficiency," Energies, MDPI, vol. 16(8), pages 1-22, April.
    11. Iora, Paolo & Beretta, Gian Paolo & Ghoniem, Ahmed F., 2019. "Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle," Energy, Elsevier, vol. 173(C), pages 893-901.
    12. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2014. "Mid and low-temperature solar–coal hybridization mechanism and validation," Energy, Elsevier, vol. 74(C), pages 78-87.
    13. Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
    14. Amelio, Mario & Ferraro, Vittorio & Marinelli, Valerio & Summaria, Antonio, 2014. "An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors," Energy, Elsevier, vol. 69(C), pages 742-748.
    15. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    16. Ni, Mingjiang & Yang, Tianfeng & Xiao, Gang & Ni, Dong & Zhou, Xin & Liu, Huanlei & Sultan, Umair & Chen, Jinli & Luo, Zhongyang & Cen, Kefa, 2017. "Thermodynamic analysis of a gas turbine cycle combined with fuel reforming for solar thermal power generation," Energy, Elsevier, vol. 137(C), pages 20-30.
    17. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    18. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    19. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    20. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:344-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.