IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v191y2017icp204-222.html
   My bibliography  Save this article

Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion

Author

Listed:
  • Yue, Ting
  • Lior, Noam

Abstract

Solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion are of increasing interest because they offer efficient use of lower temperature solar heat, with the important associated advantages of lower emissions, reduction of use of depletable fuels, production of easily storable fuel to alleviate the variability of solar heat, and relatively low cost of the use of lower temperature solar components. This paper examines economic performance of two previously proposed and analyzed thermochemical hybridized power generation systems: SOLRGT that incorporates reforming of methane, and SOLRMCC that incorporates methanol decomposition, both of which use low temperature solar heat (at ∼220°C) to help convert the methane or methanol input to syngas, which is then burned for power generation. The solar heat is used “indirectly” in the methane reforming process, to vaporize the needed water for it, while it is used directly in the methanol decomposition process since methanol decomposition requires lower temperatures than methane reforming. This analysis resulted in an equation for each power system for determining the conditions under which the hybrid systems will have a lower levelized electricity cost, and how it will change as a function of the fuel price, carbon tax rate, and the cost of the collection equipment needed for the additional heat source.

Suggested Citation

  • Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
  • Handle: RePEc:eee:appene:v:191:y:2017:i:c:p:204-222
    DOI: 10.1016/j.apenergy.2017.01.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
    2. Ng, Yi Cheng & Lipiński, Wojciech, 2012. "Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production," Energy, Elsevier, vol. 44(1), pages 720-731.
    3. Zhao, Hongbin & Yue, Pengxiu, 2011. "Performance analysis of humid air turbine cycle with solar energy for methanol decomposition," Energy, Elsevier, vol. 36(5), pages 2372-2380.
    4. Yang, Yongping & Wang, Ligang & Dong, Changqing & Xu, Gang & Morosuk, Tatiana & Tsatsaronis, George, 2013. "Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant," Applied Energy, Elsevier, vol. 112(C), pages 1087-1099.
    5. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    6. Sheu, Elysia J. & Mitsos, Alexander, 2013. "Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle," Energy, Elsevier, vol. 51(C), pages 193-202.
    7. ChunLei Yang & Sven Modell, 2013. "Power and performance," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 26(1), pages 101-132, January.
    8. Li, Yuanyuan & Zhang, Na & Cai, Ruixian & Yang, Yongping, 2013. "Performance analysis of a near zero CO2 emission solar hybrid power generation system," Applied Energy, Elsevier, vol. 112(C), pages 727-736.
    9. Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Zhang & Liu, Qibin & Lei, Jing & Jin, Hongguang, 2018. "Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition," Applied Energy, Elsevier, vol. 217(C), pages 56-65.
    2. Liu, Taixiu & Bai, Zhang & Zheng, Zhimei & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2019. "100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Yue, Ting & Lior, Noam, 2018. "Thermal hybrid power systems using multiple heat sources of different temperature: Thermodynamic analysis for Brayton cycles," Energy, Elsevier, vol. 165(PA), pages 639-665.
    4. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    5. Yue, Ting & Lior, Noam, 2018. "Thermodynamic analysis of hybrid Rankine cycles using multiple heat sources of different temperatures," Applied Energy, Elsevier, vol. 222(C), pages 564-583.
    6. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    7. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    8. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    9. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    10. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guoqiang & Li, Yuanyuan & Zhang, Na, 2017. "Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system," Energy, Elsevier, vol. 128(C), pages 152-162.
    2. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2013. "Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources," Energy, Elsevier, vol. 60(C), pages 344-360.
    3. Li, Yuanyuan & Zhang, Na & Cai, Ruixian & Yang, Yongping, 2013. "Performance analysis of a near zero CO2 emission solar hybrid power generation system," Applied Energy, Elsevier, vol. 112(C), pages 727-736.
    4. Rocha, Danilo H.D. & Siqueira, Diana S. & Silva, Rogério J., 2021. "Exergoenvironmental analysis for evaluating coal-fired power plants technologies," Energy, Elsevier, vol. 233(C).
    5. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    6. Liu, Taixiu & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2018. "Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation," Applied Energy, Elsevier, vol. 225(C), pages 380-391.
    7. Wang, Ligang & Yang, Yongping & Dong, Changqing & Morosuk, Tatiana & Tsatsaronis, George, 2014. "Multi-objective optimization of coal-fired power plants using differential evolution," Applied Energy, Elsevier, vol. 115(C), pages 254-264.
    8. Yue, Ting & Lior, Noam, 2017. "Exergo-economic competitiveness criteria for hybrid power cycles using multiple heat sources of different temperatures," Energy, Elsevier, vol. 135(C), pages 943-961.
    9. Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.
    10. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    11. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    12. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    13. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    14. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    15. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    16. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    17. Chiu, Wei-Cheng & Hou, Shuhn-Shyurng & Chen, Chen-Yu & Lai, Wei-Hsiang & Horng, Rong-Fang, 2022. "Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system," Energy, Elsevier, vol. 239(PC).
    18. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2017. "Optimization of the solar field size for the solar–coal hybrid system," Applied Energy, Elsevier, vol. 185(P2), pages 1162-1172.
    19. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    20. Li, Hui & Yang, Chao & Hu, Yaogang & Liao, Xinglin & Zeng, Zheng & Zhe, Chen, 2016. "An improved reduced-order model of an electric pitch drive system for wind turbine control system design and simulation," Renewable Energy, Elsevier, vol. 93(C), pages 188-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:191:y:2017:i:c:p:204-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.