IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v53y2013icp1-13.html
   My bibliography  Save this article

Solar power generation by PV (photovoltaic) technology: A review

Author

Listed:
  • Singh, G.K.

Abstract

The various forms of solar energy – solar heat, solar photovoltaic, solar thermal electricity, and solar fuels offer a clean, climate-friendly, very abundant and in-exhaustive energy resource to mankind. Solar power is the conversion of sunlight into electricity, either directly using photovoltaic (PV), or indirectly using concentrated solar power (CSP). The research has been underway since very beginning for the development of an affordable, in-exhaustive and clean solar energy technology for longer term benefits. This paper, therefore, reviews the progress made in solar power generation research and development since its inception. Attempts are also made to highlight the current and future issues involved in the generation of quality and reliable solar power technology for future applications. A list of 121 research publications on the subject is also appended for a quick reference.

Suggested Citation

  • Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
  • Handle: RePEc:eee:energy:v:53:y:2013:i:c:p:1-13
    DOI: 10.1016/j.energy.2013.02.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213001758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.02.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byrne, John & Kurdgelashvili, Lado & Poponi, Daniele & Barnett, Allen, 2004. "Corrigendum to "The potential of solar electric power for meeting future US energy needs: a comparison or projections of solar electric energy generation and Arctic National Wildlife Refuge oil p," Energy Policy, Elsevier, vol. 32(8), pages 1039-1041, June.
    2. Byrne, John & Kurdgelashvili, Lado & Poponi, Daniele & Barnett, Allen, 2004. "The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife Refuge oil production," Energy Policy, Elsevier, vol. 32(2), pages 289-297, January.
    3. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    4. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    5. Phuangpornpitak, N. & Kumar, S., 2007. "PV hybrid systems for rural electrification in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1530-1543, September.
    6. Burns, John Edward & Kang, Jin-Su, 2012. "Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential," Energy Policy, Elsevier, vol. 44(C), pages 217-225.
    7. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    8. Tsai, Wen-Tien & Kuo, Kuan-Chi, 2010. "An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan," Energy, Elsevier, vol. 35(12), pages 4824-4830.
    9. Kumaresan, Govindaraj & Sridhar, Rahulram & Velraj, Ramalingom, 2012. "Performance studies of a solar parabolic trough collector with a thermal energy storage system," Energy, Elsevier, vol. 47(1), pages 395-402.
    10. Kaldellis, J.K. & Kavadias, K.A. & Koronakis, P.S., 2007. "Comparing wind and photovoltaic stand-alone power systems used for the electrification of remote consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 57-77, January.
    11. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    12. Margeta, Jure & Glasnovic, Zvonimir, 2011. "Exploitation of temporary water flow by hybrid PV-hydroelectric plant," Renewable Energy, Elsevier, vol. 36(8), pages 2268-2277.
    13. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.
    14. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    15. Canale, M. & Fagiano, L. & Milanese, M., 2009. "KiteGen: A revolution in wind energy generation," Energy, Elsevier, vol. 34(3), pages 355-361.
    16. Habib, M.A & Said, S.A.M & El-Hadidy, M.A & Al-Zaharna, I, 1999. "Optimization procedure of a hybrid photovoltaic wind energy system," Energy, Elsevier, vol. 24(11), pages 919-929.
    17. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    18. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    19. Tina, Giuseppe Marco & Gagliano, Salvina & Graditi, Giorgio & Merola, Angelo, 2012. "Experimental validation of a probabilistic model for estimating the double axis PV tracking energy production," Applied Energy, Elsevier, vol. 97(C), pages 990-998.
    20. van Dyk, E.E. & Gxasheka, A.R. & Meyer, E.L., 2005. "Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 30(3), pages 399-411.
    21. Roth, P. & Georgiev, A. & Boudinov, H., 2004. "Design and construction of a system for sun-tracking," Renewable Energy, Elsevier, vol. 29(3), pages 393-402.
    22. Elhadidy, M.A., 2002. "Performance evaluation of hybrid (wind/solar/diesel) power systems," Renewable Energy, Elsevier, vol. 26(3), pages 401-413.
    23. Cherif, Habib & Belhadj, Jamel, 2011. "Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit," Energy, Elsevier, vol. 36(10), pages 6058-6067.
    24. Margeta, Jure & Glasnovic, Zvonimir, 2010. "Feasibility of the green energy production by hybrid solar + hydro power system in Europe and similar climate areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1580-1590, August.
    25. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    26. M. Ibrahim & K. Sopian & W.R.W. Daud & M.A. Alghoul, 2009. "An experimental analysis of solar-assisted chemical heat pump dryer," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(2), pages 78-83, May.
    27. Ai, B. & Yang, H. & Shen, H. & Liao, X., 2003. "Computer-aided design of PV/wind hybrid system," Renewable Energy, Elsevier, vol. 28(10), pages 1491-1512.
    28. Tiba, Chigueru & de A. Beltrão, Ricardo E., 2012. "Siting PV plant focusing on the effect of local climate variables on electric energy production – Case study for Araripina and Recife," Renewable Energy, Elsevier, vol. 48(C), pages 309-317.
    29. Sopian, Kamaruzzaman & Ibrahim, Mohd Zamri & Wan Daud, Wan Ramli & Othman, Mohd Yusof & Yatim, Baharuddin & Amin, Nowshad, 2009. "Performance of a PV–wind hybrid system for hydrogen production," Renewable Energy, Elsevier, vol. 34(8), pages 1973-1978.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    2. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    3. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    4. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    5. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    6. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    7. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    8. Hart, Rob, 2016. "Non-renewable resources in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 1-20.
    9. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    10. Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
    11. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    12. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    13. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    14. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    15. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    16. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    17. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
    18. Hector Pollitt & Karsten Neuhoff & Xinru Lin, 2020. "The impact of implementing a consumption charge on carbon-intensive materials in Europe," Climate Policy, Taylor & Francis Journals, vol. 20(S1), pages 74-89, April.
    19. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    20. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:53:y:2013:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.