IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1076-1086.html
   My bibliography  Save this article

Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters

Author

Listed:
  • El-Sebaii, A.A.
  • Aboul-Enein, S.
  • Ramadan, M.R.I.
  • Shalaby, S.M.
  • Moharram, B.M.

Abstract

In this paper, the double pass flat and v-corrugated plate solar air heaters are investigated theoretically and experimentally. Analytical models for the air heater with flat and v-corrugated plates are presented. Numerical calculations have been performed under Tanta (latitude, 30° 47′ N) prevailing weather conditions. The theoretical predictions indicated that the agreement with the measured performance is fairly good. Comparisons between the measured outlet temperatures of flowing air, output power and overall heat losses of the flat and v-corrugated plate solar air heaters are also presented. The effect of mass flow rates of air on pressure drop, thermal and thermo hydraulic efficiencies of the flat and v-corrugated plate solar air heaters are also investigated. The results showed that the double pass v-corrugated plate solar air heater is 11–14% more efficient compared to the double pass flat plate solar air heater. It is also indicated that the peak values of the thermo hydraulic efficiencies of the flat and v-corrugated plate solar air heaters are obtained when the mass flow rate of the flowing air is 0.02 kg/s.

Suggested Citation

  • El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters," Energy, Elsevier, vol. 36(2), pages 1076-1086.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1076-1086
    DOI: 10.1016/j.energy.2010.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahu, M.M. & Bhagoria, J.L., 2005. "Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 30(13), pages 2057-2073.
    2. Ho, C.D. & Yeh, H.M. & Cheng, T.W. & Chen, T.C. & Wang, R.C., 2009. "The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached," Applied Energy, Elsevier, vol. 86(9), pages 1470-1478, September.
    3. Youcef-Ali, S. & Desmons, J.Y., 2006. "Numerical and experimental study of a solar equipped with offset rectangular plate fin absorber plate," Renewable Energy, Elsevier, vol. 31(13), pages 2063-2075.
    4. Karwa, Rajendra & Chauhan, Kalpana, 2010. "Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate," Energy, Elsevier, vol. 35(1), pages 398-409.
    5. Yeh, H.-M. & Ho, C.-D. & Hou, J.-Z., 2002. "Collector efficiency of double-flow solar air heaters with fins attached," Energy, Elsevier, vol. 27(8), pages 715-727.
    6. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    7. Chaube, Alok & Sahoo, P.K. & Solanki, S.C., 2006. "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater," Renewable Energy, Elsevier, vol. 31(3), pages 317-331.
    8. Yeh, Ho-Ming & Ho, Chii-Dong, 2009. "Effect of external recycle on the performances of flat-plate solar air heaters with internal fins attached," Renewable Energy, Elsevier, vol. 34(5), pages 1340-1347.
    9. Kabeel, A.E. & Mečárik, K., 1998. "Shape optimization for absorber plates of solar air collectors," Renewable Energy, Elsevier, vol. 13(1), pages 121-131.
    10. Karim, Md Azharul & Hawlader, M.N.A, 2006. "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, Elsevier, vol. 31(4), pages 452-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Thermal performance investigation of double pass-finned plate solar air heater," Applied Energy, Elsevier, vol. 88(5), pages 1727-1739, May.
    2. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    3. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    4. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    5. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    6. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    7. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    8. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    9. Yang, Ming & Yang, Xudong & Li, Xing & Wang, Zhifeng & Wang, Pengsu, 2014. "Design and optimization of a solar air heater with offset strip fin absorber plate," Applied Energy, Elsevier, vol. 113(C), pages 1349-1362.
    10. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    11. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    12. Rai, Shalini & Chand, Prabha & Sharma, S.P., 2018. "Evaluation of thermo hydraulic effect on offset finned absorber solar air heater," Renewable Energy, Elsevier, vol. 125(C), pages 39-54.
    13. Kumar, Rajesh & Chand, Prabha, 2017. "Performance enhancement of solar air heater using herringbone corrugated fins," Energy, Elsevier, vol. 127(C), pages 271-279.
    14. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    15. Zukowski, M., 2015. "Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater," Applied Energy, Elsevier, vol. 142(C), pages 10-20.
    16. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    17. Kumar, Amit & Akshayveer, & Singh, Ajeet Pratap & Singh, O.P., 2020. "Efficient designs of double-pass curved solar air heaters," Renewable Energy, Elsevier, vol. 160(C), pages 1105-1118.
    18. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    19. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
    20. Ganesh Kumar, P. & Balaji, K. & Sakthivadivel, D. & Vigneswaran, V.S. & Velraj, R. & Kim, Sung Chul, 2021. "Enhancement of heat transfer in a combined solar air heating and water heater system," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1076-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.