IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i8p715-727.html
   My bibliography  Save this article

Collector efficiency of double-flow solar air heaters with fins attached

Author

Listed:
  • Yeh, H.-M.
  • Ho, C.-D.
  • Hou, J.-Z.

Abstract

A design for inserting an absorbing plate to divide the air duct into two channels (the upper and the lower) for double-flow operation in solar air heaters with fins attached over and under the absorbing plate has been investigated both experimentally and analytically. The present work is restricted to the case where the outside air is being heated directly, and the configuration investigated here will have lower collector efficiency if the inlet-air temperature is substantially higher than the ambient temperature because of the far greater potential for heat loss from the top. However, the double-flow device introduced here was designed for creating a solar collector with heat-transfer area double between the absorbing plate and heated air. This advantage may compensate for the heat loss from the top when the inlet-air temperature is higher than the ambient temperature. The agreement of the theoretical predictions with those measured values from the experimental results is fairly good. Considerable improvement in collector efficiency of solar air heaters with fins attached is obtained by employing such a double-flow device, instead of using a single-flow example and operating at the same total flow rate. Both the theoretical predictions and experimental results showed that the optimal fraction of airflow rate in upper and lower subchannels is around the value of 0.5. The effect of the flow-rate ratio of the two air streams of flowing over and under the absorbing plate on the enhancement of collector efficiency is also investigated.

Suggested Citation

  • Yeh, H.-M. & Ho, C.-D. & Hou, J.-Z., 2002. "Collector efficiency of double-flow solar air heaters with fins attached," Energy, Elsevier, vol. 27(8), pages 715-727.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:8:p:715-727
    DOI: 10.1016/S0360-5442(02)00010-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00010-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeh, Ho-Ming & Ho, Chii-Dong & Hou, Jun-Ze, 1999. "The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate," Energy, Elsevier, vol. 24(10), pages 857-871.
    2. Yeh, Ho-ming & Lin, Tong-Tshien, 1995. "The effect of collector aspect ratio on the collector efficiency of flat-plate solar air heaters," Energy, Elsevier, vol. 20(10), pages 1041-1047.
    3. Garg, H.P. & Sharma, V.K. & Bhargava, A.K., 1985. "Theory of multiple-pass solar air heaters," Energy, Elsevier, vol. 10(5), pages 589-599.
    4. Yeh, Ho-Ming & Ting, Young-Chun, 1986. "Effects of free convection on collector efficiencies of solar air heaters," Applied Energy, Elsevier, vol. 22(2), pages 145-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, H.M. & Ho, C.D. & Yeh, C.W., 2003. "Effect of aspect ratio on the collector efficiency of sheet-and-tube solar water heaters with the consideration of hydraulic dissipated energy," Renewable Energy, Elsevier, vol. 28(10), pages 1575-1586.
    2. Ho, C.D. & Chen, T.C., 2006. "The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle," Renewable Energy, Elsevier, vol. 31(7), pages 953-970.
    3. Yeh, Ho-Ming & Ho, Chii-Dong, 2009. "Effect of external recycle on the performances of flat-plate solar air heaters with internal fins attached," Renewable Energy, Elsevier, vol. 34(5), pages 1340-1347.
    4. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    5. Kumar, Rajesh & Chand, Prabha, 2017. "Performance enhancement of solar air heater using herringbone corrugated fins," Energy, Elsevier, vol. 127(C), pages 271-279.
    6. Ho, C.D. & Yeh, H.M. & Cheng, T.W. & Chen, T.C. & Wang, R.C., 2009. "The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached," Applied Energy, Elsevier, vol. 86(9), pages 1470-1478, September.
    7. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    8. Ho-Ming Yeh & Chii-Dong Ho, 2012. "Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle," Energies, MDPI, vol. 5(8), pages 1-16, July.
    9. Yeh, Ho-Ming & Ho, Chii-Dong & Hou, Jun-Ze, 1999. "The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate," Energy, Elsevier, vol. 24(10), pages 857-871.
    10. Ho, C.D. & Yeh, H.M. & Wang, R.C., 2005. "Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle," Energy, Elsevier, vol. 30(15), pages 2796-2817.
    11. Wazed, M.A. & Nukman, Y. & Islam, M.T., 2010. "Design and fabrication of a cost effective solar air heater for Bangladesh," Applied Energy, Elsevier, vol. 87(10), pages 3030-3036, October.
    12. Ho, C.D. & Yeh, C.W. & Hsieh, S.M., 2005. "Improvement in device performance of multi-pass flat-plate solar air heaters with external recycle," Renewable Energy, Elsevier, vol. 30(10), pages 1601-1621.
    13. Chii-Dong Ho & Hsuan Chang & Zih-Syuan Hong & Chien-Chang Huang & Yu-Han Chen, 2020. "Increasing the Device Performance of Recycling Double-Pass W-Ribs Solar Air Heaters," Energies, MDPI, vol. 13(9), pages 1-16, April.
    14. Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
    15. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    16. Chii Dong Ho & Hsuan Chang & Rei Chi Wang & Chun Sheng Lin, 2013. "Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins," Energies, MDPI, vol. 6(4), pages 1-22, March.
    17. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    18. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    19. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    20. Chii-Dong Ho & Hsuan Chang & Chih-Wei Yeh & Choon-Aun Ng & Ping-Cheng Hsieh, 2023. "Optimizing Device Performance of Multi-Pass Flat-Plate Solar Air Heaters on Various Recycling Configurations," Energies, MDPI, vol. 16(6), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:8:p:715-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.