IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p764-777.html
   My bibliography  Save this article

Turbomachinery for the air management and energy recovery in fuel cell gas turbine hybrid systems

Author

Listed:
  • Traverso, A.
  • Magistri, L.
  • Massardo, A.F.

Abstract

High temperature fuel cells (MCFCs and SOFCs) can operate at atmospheric or pressurised conditions. In both cases, system performance can be significantly improved when the fuel cells are integrated with proper devices, which are designed to provide the necessary air inlet conditions and to recover the exhaust gas energy.

Suggested Citation

  • Traverso, A. & Magistri, L. & Massardo, A.F., 2010. "Turbomachinery for the air management and energy recovery in fuel cell gas turbine hybrid systems," Energy, Elsevier, vol. 35(2), pages 764-777.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:764-777
    DOI: 10.1016/j.energy.2009.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciacovelli, Adriano & Verda, Vittorio, 2009. "Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC)," Energy, Elsevier, vol. 34(7), pages 850-865.
    2. Kandepu, Rambabu & Imsland, Lars & Foss, Bjarne A. & Stiller, Christoph & Thorud, Bjørn & Bolland, Olav, 2007. "Modeling and control of a SOFC-GT-based autonomous power system," Energy, Elsevier, vol. 32(4), pages 406-417.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
    2. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Jia, Junxi & Li, Qiang & Luo, Ming & Wei, Liming & Abudula, Abuliti, 2011. "Effects of gas recycle on performance of solid oxide fuel cell power systems," Energy, Elsevier, vol. 36(2), pages 1068-1075.
    4. Chen, Jinwei & Chen, Yao & Zhang, Huisheng & Weng, Shilie, 2018. "Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors," Energy, Elsevier, vol. 163(C), pages 1-14.
    5. Harun, Nor Farida & Tucker, David & Adams II, Thomas A., 2017. "Technical challenges in operating an SOFC in fuel flexible gas turbine hybrid systems: Coupling effects of cathode air mass flow," Applied Energy, Elsevier, vol. 190(C), pages 852-867.
    6. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    7. Giugno, Andrea & Mantelli, Luca & Cuneo, Alessandra & Traverso, Alberto, 2020. "Performance analysis of a fuel cell hybrid system subject to technological uncertainties," Applied Energy, Elsevier, vol. 279(C).
    8. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    9. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    10. Harun, Nor Farida & Tucker, David & Adams, Thomas A., 2016. "Impact of fuel composition transients on SOFC performance in gas turbine hybrid systems," Applied Energy, Elsevier, vol. 164(C), pages 446-461.
    11. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
    12. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    13. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    2. Li, Xianglin & Faghri, Amir, 2011. "Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures," Energy, Elsevier, vol. 36(1), pages 403-414.
    3. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    4. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    5. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    6. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    7. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
    8. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
    9. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    10. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    11. Obara, Shin’ya, 2015. "Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics," Applied Energy, Elsevier, vol. 141(C), pages 19-31.
    12. Denver F. Cheddie, 2010. "Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant," Energies, MDPI, vol. 3(4), pages 1-16, April.
    13. Jiang, Jianhua & Shen, Tan & Deng, Zhonghua & Fu, Xiaowei & Li, Jian & Li, Xi, 2018. "High efficiency thermoelectric cooperative control of a stand-alone solid oxide fuel cell system with an air bypass valve," Energy, Elsevier, vol. 152(C), pages 13-26.
    14. Roy, Monisha & Roy, S. & Basak, Tanmay, 2015. "Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities," Energy, Elsevier, vol. 82(C), pages 1-22.
    15. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    16. Slippey, Andrew & Madani, Omid & Nishtala, Kalyan & Das, Tuhin, 2015. "Invariant properties of solid oxide fuel cell systems with integrated reformers," Energy, Elsevier, vol. 90(P1), pages 452-463.
    17. Rangel-Hernandez, V.H. & Damian-Ascencio, C. & Juarez-Robles, D. & Gallegos-Muñoz, A. & Zaleta-Aguilar, A. & Plascencia-Mora, H., 2011. "Entropy generation analysis of a proton exchange membrane fuel cell (PEMFC) with a fermat spiral as a flow distributor," Energy, Elsevier, vol. 36(8), pages 4864-4870.
    18. Jing Bian & Liqiang Duan & Jing Lei & Yongping Yang, 2020. "Study on the Entropy Generation Distribution Characteristics of Molten Carbonate Fuel Cell System under Different CO 2 Enrichment Conditions," Energies, MDPI, vol. 13(21), pages 1-18, November.
    19. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    20. Anastassios Stamatis & Christina Vinni & Diamantis Bakalis & Fotini Tzorbatzoglou & Panagiotis Tsiakaras, 2012. "Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol," Energies, MDPI, vol. 5(11), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:764-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.