IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222021661.html
   My bibliography  Save this article

A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system

Author

Listed:
  • Chen, Jinwei
  • Hu, Zhenchao
  • Lu, Jinzhi
  • Zhang, Huisheng
  • Weng, Shilie

Abstract

A novel control strategy was developed with an anode variable geometry ejector for a solid oxide fuel cell-gas turbine (SOFC-GT) system. The anode inlet temperature was controlled by combining two modes to achieve a greater controllable range: anode variable geometry ejector adjusting and after-burner fuel valve adjusting. Two tests were carried out under small-scale and large-scale load steps. The results indicate that all controlled variables can be effectively kept around set-point. Moreover, the critical parameters are kept within safe ranges, including steam-to-carbon ratio higher than 2.0, peak temperature gradient below 10 K/cm, peak time-dependent temperature gradient below 3 K/min, and surge margin higher than 15%. The developed novel control strategy can maintain almost constant SOFC spatial temperature. The spatial temperature variation is within 2.50 K under 5% load step, and within 14.30 K under 30% load step. Besides, the novel control strategy can keep the system efficiency at a high level (more than 63.21%) during the load tracking. Compared with the conventional control strategy with a fixed geometry ejector, the results demonstrated that the novel control strategy can significantly improve the system performance, especially the transient behaviors of after-burner fuel rate, turbine inlet temperature, and system efficiency.

Suggested Citation

  • Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021661
    DOI: 10.1016/j.energy.2022.125281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papurello, Davide & Lanzini, Andrea & Drago, Davide & Leone, Pierluigi & Santarelli, Massimo, 2016. "Limiting factors for planar solid oxide fuel cells under different trace compound concentrations," Energy, Elsevier, vol. 95(C), pages 67-78.
    2. Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
    3. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    4. Kandepu, Rambabu & Imsland, Lars & Foss, Bjarne A. & Stiller, Christoph & Thorud, Bjørn & Bolland, Olav, 2007. "Modeling and control of a SOFC-GT-based autonomous power system," Energy, Elsevier, vol. 32(4), pages 406-417.
    5. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    6. Chen, Jinwei & Chen, Yao & Zhang, Huisheng & Weng, Shilie, 2018. "Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors," Energy, Elsevier, vol. 163(C), pages 1-14.
    7. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    8. Ferrari, M.L. & Pascenti, M. & Massardo, A.F., 2018. "Validated ejector model for hybrid system applications," Energy, Elsevier, vol. 162(C), pages 1106-1114.
    9. Shuanghong Li & Chengjun Zhan & Yupu Yang, 2018. "Control System Based on Anode Offgas Recycle for Solid Oxide Fuel Cell System," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-16, March.
    10. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    11. Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Ali Reza & Fanaei, Mohammad Ali & Panahi, Mehdi, 2022. "Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system," Applied Energy, Elsevier, vol. 328(C).
    2. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    3. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    4. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    5. Guo, Fafu & Li, Chengjie & Liu, He & Cheng, Kunlin & Qin, Jiang, 2023. "Matching and performance analysis of a solid oxide fuel cell turbine-less hybrid electric propulsion system on aircraft," Energy, Elsevier, vol. 263(PA).
    6. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    7. Jiang, Jianhua & Shen, Tan & Deng, Zhonghua & Fu, Xiaowei & Li, Jian & Li, Xi, 2018. "High efficiency thermoelectric cooperative control of a stand-alone solid oxide fuel cell system with an air bypass valve," Energy, Elsevier, vol. 152(C), pages 13-26.
    8. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    10. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    11. Yin, Linfei & Liu, Dongduan, 2023. "Adaptive multistep model predictive control for tubular grid-connected solid oxide fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    12. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
    13. Safari, Amin & Shahsavari, Hossein & Salehi, Javad, 2018. "A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems," Energy, Elsevier, vol. 149(C), pages 397-413.
    14. Ferrari, M.L. & Pascenti, M. & Massardo, A.F., 2018. "Validated ejector model for hybrid system applications," Energy, Elsevier, vol. 162(C), pages 1106-1114.
    15. Obara, Shin'ya, 2022. "Resilience of the microgrid with a core substation with 100% hydrogen fuel cell combined cycle and a general substation with variable renewable energy," Applied Energy, Elsevier, vol. 327(C).
    16. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    17. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    18. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    19. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    20. Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.