IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223015797.html
   My bibliography  Save this article

Valorisation of bakery waste via the bioethanol pathway

Author

Listed:
  • Nikolaou, M.
  • Stavraki, C.
  • Bousoulas, Ι.
  • Malamis, D.
  • Loizidou, M.
  • Mai, S.
  • Barampouti, E.M.

Abstract

Bakery waste is a stream that is generated in enormous quantities globally and thus poses a significant environmental problem. Furthermore, the increasing use of fossil fuels necessitates the development of alternate energy sources. In an effort to meet the EU circularity goals, in this study, a holistic method to address these issues is proposed; producing bioethanol from bakery waste. Bakery waste that was collected from local bakeries and cafeterias was utilized as feedstock. Two fermentation modes were studied in laboratory scale by applying factorial design; separate hydrolysis and fermentation and simultaneous saccharification and fermentation. For the separate hydrolysis and fermentation trials, the ethanol yield reached was almost 100% for 20 μLgstarch−1 enzyme loading and 20% solid loading at 35°C, whereas the highest ethanol yield for simultaneous saccharification and fermentation was 95% for 20 μLgstarch−1 enzyme loading and 20% solid loading. Even though a small difference in the yield was observed between the two fermentation modes, simultaneous saccharification and fermentation is beneficial in terms of technoeconomics. Furthermore, it was established that the valorisation of bakery waste for the production of bioethanol is technically viable, even at the pilot scale, as 100 gL−1 of ethanol after 31 h in a 200 L bioreactor under the optimum conditions was observed. Nevertheless, to evaluate the process feasibility, other techno-economical factors of the entire value chain must also be taken into account. These include fluctuations in the bakery waste composition, collection of bread residues as well as recovery and purification of ethanol.

Suggested Citation

  • Nikolaou, M. & Stavraki, C. & Bousoulas, Ι. & Malamis, D. & Loizidou, M. & Mai, S. & Barampouti, E.M., 2023. "Valorisation of bakery waste via the bioethanol pathway," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015797
    DOI: 10.1016/j.energy.2023.128185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jun & Zhao, Renyong & Xu, Youjie & Wu, Xiaorong & Bean, Scott R. & Wang, Donghai, 2022. "Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances," Renewable Energy, Elsevier, vol. 188(C), pages 223-239.
    2. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sławomir Obidziński & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska & Aneta Sienkiewicz & Paweł Cwalina & Damian Faszczewski & Jacek Wasilewski, 2024. "The Effect of Bakery Waste Addition on Pine Sawdust Pelletization and Pellet Quality," Energies, MDPI, vol. 17(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    3. Malherbe, Sarel J.M. & Cripwell, Rosemary A. & Favaro, Lorenzo & van Zyl, Willem H. & Viljoen-Bloom, Marinda, 2023. "Triticale and sorghum as feedstock for bioethanol production via consolidated bioprocessing," Renewable Energy, Elsevier, vol. 206(C), pages 498-505.
    4. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    5. Wang, Jianda & Dong, Kangyin & Sha, Yezhou & Yan, Cheng, 2022. "Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Shahzad, Umer & Ferraz, Diogo & Nguyen, Huu-Huan & Cui, Lianbiao, 2022. "Investigating the spill overs and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in context of China," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    7. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    8. Liu, Qiang & Zhao, Zhongwei & Liu, Yiran & He, Yao, 2022. "Natural resources commodity prices volatility, economic performance and environment: Evaluating the role of oil rents," Resources Policy, Elsevier, vol. 76(C).
    9. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Ahmad, Mahmood & Ahmed, Zahoor & Khan, Sana Akbar & Alvarado, Rafael, 2023. "Towards environmental sustainability in E−7 countries: Assessing the roles of natural resources, economic growth, country risk, and energy transition," Resources Policy, Elsevier, vol. 82(C).
    11. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    12. Badeeb, Ramez Abubakr & Wang, Bo & Zhao, Jun & Khan, Zeeshan & Uktamov, Khusniddin Fakhriddinovich & Zhang, Changyong, 2023. "Natural resources extraction and financial inclusion: Linear and non-linear effect of natural resources on financial sector," Resources Policy, Elsevier, vol. 85(PA).
    13. Zakari, Abdulrasheed & Tawiah, Vincent & Khan, Irfan & Alvarado, Rafael & Li, Guo, 2022. "Ensuring sustainable consumption and production pattern in Africa: Evidence from green energy perspectives," Energy Policy, Elsevier, vol. 169(C).
    14. Deng, Wei & Akram, Rabia & Mirza, Nawazish, 2022. "Economic performance and natural resources: Evaluating the role of economic risk," Resources Policy, Elsevier, vol. 78(C).
    15. Ulaş Ünlü & Furkan Yıldırım & Ayhan Kuloğlu & Ersan Ersoy & Emin Hüseyin Çetenak, 2022. "Nexus between Renewable Energy, Credit Gap Risk, Financial Development and R&D Expenditure: Panel ARDL Approach," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    16. Xie, Mingting & Irfan, Muhammad & Razzaq, Asif & Dagar, Vishal, 2022. "Forest and mineral volatility and economic performance: Evidence from frequency domain causality approach for global data," Resources Policy, Elsevier, vol. 76(C).
    17. Xiuqin Zhang & Xudong Shi & Yasir Khan & Taimoor Hassan & Mohamed Marie, 2023. "Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Lv, Zhike & Jiang, Fei & Xu, Ting, 2022. "Female parliamentarians and environment nexus: The neglected role of governance quality," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    19. Ahmad, Manzoor & Zheng, Jianghuai, 2021. "Do innovation in environmental-related technologies cyclically and asymmetrically affect environmental sustainability in BRICS nations?," Technology in Society, Elsevier, vol. 67(C).
    20. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Mansoor, Sadia & Sinha, Avik & Qin, Quande, 2022. "ICT and education as determinants of environmental quality: The role of financial development in selected Asian countries," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.