IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033084.html
   My bibliography  Save this article

Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer

Author

Listed:
  • Son, Yeong Geon
  • Oh, Byeong Chan
  • Acquah, Moses Amoasi
  • Kim, Sung Yul

Abstract

In recent years, the frequency of power demand imbalance and negative price phenomenon has risen due to the rapid expansion of renewable energy sources (RES). Because of this, a means to reduce the curtailment of RES by utilizing surplus energy is essential. This paper focuses on reducing the curtailment of wind turbines (WT) with high output intermittency and minimizing the investment cost of IES via an integrated energy system (IES). The IES operation seeks to improve the acceptability and efficiency of the RES as it supports the integration of various energies mix, such as electricity, heat, hydrogen. This paper proposes an optimal facility combination set (FCS) of IES that satisfies the requirements of ISO and IPP using Multi-Objective Optimization Programming (MOP). The case study is based on a wind farm in South Korea, set in Aewol-eup, Jeju-Island. The case study results provide the best configuration of the IES energy mix with the best economic value and efficiency while satisfying ISO and IPP perspectives.

Suggested Citation

  • Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033084
    DOI: 10.1016/j.energy.2022.126422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henni, Sarah & Staudt, Philipp & Kandiah, Balendra & Weinhardt, Christof, 2021. "Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment," Applied Energy, Elsevier, vol. 288(C).
    2. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    3. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    4. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    5. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
    6. Cong, Di & Liang, Lingling & Jing, Shaoxing & Han, Yongming & Geng, Zhiqiang & Chu, Chong, 2021. "Energy supply efficiency evaluation of integrated energy systems using novel SBM-DEA integrating Monte Carlo," Energy, Elsevier, vol. 231(C).
    7. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    8. Newbery, David, 2021. "National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage," Energy Policy, Elsevier, vol. 158(C).
    9. Villanueva, D. & Feijóo, A., 2010. "Wind power distributions: A review of their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1490-1495, June.
    10. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    11. Fassinou, Wanignon Ferdinand & Sako, Aboubakar & Fofana, Alhassane & Koua, Kamenan Blaise & Toure, Siaka, 2010. "Fatty acids composition as a means to estimate the high heating value (HHV) of vegetable oils and biodiesel fuels," Energy, Elsevier, vol. 35(12), pages 4949-4954.
    12. Ma, Yiming & Wang, Haixin & Hong, Feng & Yang, Junyou & Chen, Zhe & Cui, Haoqian & Feng, Jiawei, 2021. "Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system," Energy, Elsevier, vol. 236(C).
    13. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    14. Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir & Pishbin, Seyyed Iman & Pourramezan, Mahdi, 2019. "Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions," Energy, Elsevier, vol. 167(C), pages 235-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeong-Geon Son & Sung-Yul Kim & In-Su Bae, 2024. "Optimal Coordination of Energy Coupling System Considering Uncertainty of Renewable Energy Sources," Energies, MDPI, vol. 17(4), pages 1-17, February.
    2. Son, Yeong Geon & Choi, Sungyun & Aquah, Moses Amoasi & Kim, Sung Yul, 2023. "Systematic planning of power-to-gas for improving photovoltaic acceptance rate: Application of the potential RES penetration index," Applied Energy, Elsevier, vol. 349(C).
    3. Gyeong-Taek Do & Eun-Tae Son & Byeong-Chan Oh & Hong-Joo Kim & Ho-Sung Ryu & Jin-Tae Cho & Sung-Yul Kim, 2023. "Technical Impacts of Virtual Clean Hydrogen Plants: Promoting Energy Balance and Resolving Transmission Congestion Challenges," Energies, MDPI, vol. 16(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    3. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    4. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    5. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    7. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    8. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    9. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    10. Son, Yeong Geon & Choi, Sungyun & Aquah, Moses Amoasi & Kim, Sung Yul, 2023. "Systematic planning of power-to-gas for improving photovoltaic acceptance rate: Application of the potential RES penetration index," Applied Energy, Elsevier, vol. 349(C).
    11. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Zhang, Gang & Wen, Jiaxing & Xie, Tuo & Zhang, Kaoshe & Jia, Rong, 2023. "Bi-layer economic scheduling for integrated energy system based on source-load coordinated carbon reduction," Energy, Elsevier, vol. 280(C).
    13. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    15. Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
    16. Qiu, Rui & Liao, Qi & Klemeš, Jiří Jaromír & Liang, Yongtu & Guo, Zhichao & Chen, Jinyu & Zhang, Haoran, 2022. "Roadmap to urban energy internet with wind electricity-natural gas nexus: Economic and environmental analysis," Energy, Elsevier, vol. 245(C).
    17. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    18. Greiml, Matthias & Fritz, Florian & Kienberger, Thomas, 2021. "Increasing installable photovoltaic power by implementing power-to-gas as electricity grid relief – A techno-economic assessment," Energy, Elsevier, vol. 235(C).
    19. Li, Li & Wang, Jing & Zhong, Xiaoyi & Lin, Jian & Wu, Nianyuan & Zhang, Zhihui & Meng, Chao & Wang, Xiaonan & Shah, Nilay & Brandon, Nigel & Xie, Shan & Zhao, Yingru, 2022. "Combined multi-objective optimization and agent-based modeling for a 100% renewable island energy system considering power-to-gas technology and extreme weather conditions," Applied Energy, Elsevier, vol. 308(C).
    20. Yeong-Geon Son & Eun-Tae Son & Moses-Amoasi Acquah & Sung-Hoon Choo & Hyun-Sik Jo & Ji-Eun Lee & Dong-Min Kim & Sung-Yul Kim, 2022. "Independent Power Producer Approach to Optimal Design and Operation of IES with Wind Power Plants," Energies, MDPI, vol. 16(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.