IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p931-d1340126.html
   My bibliography  Save this article

Optimal Coordination of Energy Coupling System Considering Uncertainty of Renewable Energy Sources

Author

Listed:
  • Yeong-Geon Son

    (Department of Electronic and Electrical Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea)

  • Sung-Yul Kim

    (Department of Electrical Energy Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea)

  • In-Su Bae

    (Department of Electrical Control and Measurement Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea)

Abstract

To advance carbon neutrality policies, many countries are increasingly integrating Renewable Energy Sources (RESs) into their energy mix. However, for harnessing natural energy in power generation, RESs present challenges in output control, potentially leading to power imbalances. Such imbalances, when coupled with an excessive reliance on unpredictable RES, may necessitate the curtailment of grid-integrated renewable generation, halting production despite available capacity. This paper proposes strategies to mitigate the economic and operational efficiency impacts of increased RESs on the power grid. It focuses on the optimal operation of Battery Energy Storage Systems (BESSs) and Power to Gas (P2G) technology, which flexibly converts surplus electricity into hydrogen. By employing Mixed Integer Linear Programming (MILP) for optimization and Stochastic Programming (SP) for the management of the uncertainty of renewable energy output, this paper evaluates the anticipated benefits of BESS and P2G applications.

Suggested Citation

  • Yeong-Geon Son & Sung-Yul Kim & In-Su Bae, 2024. "Optimal Coordination of Energy Coupling System Considering Uncertainty of Renewable Energy Sources," Energies, MDPI, vol. 17(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:931-:d:1340126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    2. Aleixandre-Tudó, José Luis & Castelló-Cogollos, Lourdes & Aleixandre, José Luis & Aleixandre-Benavent, Rafael, 2019. "Renewable energies: Worldwide trends in research, funding and international collaboration," Renewable Energy, Elsevier, vol. 139(C), pages 268-278.
    3. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    2. Victor Hugo Souza de Abreu & Victória Gonçalves Ferreira Pereira & Laís Ferreira Crispino Proença & Fabio Souza Toniolo & Andrea Souza Santos, 2023. "A Systematic Study on Techno-Economic Evaluation of Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-23, September.
    3. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    5. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    6. Gyeong-Taek Do & Eun-Tae Son & Byeong-Chan Oh & Hong-Joo Kim & Ho-Sung Ryu & Jin-Tae Cho & Sung-Yul Kim, 2023. "Technical Impacts of Virtual Clean Hydrogen Plants: Promoting Energy Balance and Resolving Transmission Congestion Challenges," Energies, MDPI, vol. 16(22), pages 1-13, November.
    7. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    8. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).
    10. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    11. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    12. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    13. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    14. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    15. Juan Li & Keyin Liu & Zixin Yang & Yi Qu, 2023. "Evolution and Impacting Factors of Global Renewable Energy Products Trade Network: An Empirical Investigation Based on ERGM Model," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    16. Gintautas Miliauskas & Egidijus Puida & Robertas Poškas & Povilas Poškas, 2021. "The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    17. Zhenya Ji & Zishan Guo & Hao Li & Qi Wang, 2021. "Automated Scheduling Approach under Smart Contract for Remote Wind Farms with Power-to-Gas Systems in Multiple Energy Markets," Energies, MDPI, vol. 14(20), pages 1-17, October.
    18. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    19. Wen-Hsiang Chiu & Wen-Cheng Lin & Chun-Nan Chen & Nien-Ping Chen, 2021. "Using an Analytical Hierarchy Process to Analyze the Development of the Green Energy Industry," Energies, MDPI, vol. 14(15), pages 1-15, July.
    20. Chun-Nan Chen & Chun-Ting Yang, 2021. "The Investability of PV Systems under Descending Feed-In Tariffs: Taiwan Case," Energies, MDPI, vol. 14(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:931-:d:1340126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.