IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021399.html
   My bibliography  Save this article

Research on a cross-regional robust trading strategy based on multiple market mechanisms

Author

Listed:
  • Yan, Sizhe
  • Wang, Weiqing
  • Li, Xiaozhu
  • Zhao, Yi

Abstract

With the increase in the variety of market players in cross-regional trading, the interaction of interests among multiple participants is complicated, resulting in unbalanced interests in the cross-regional trading market. Therefore, a robust trading model with joint multi-market mechanisms is proposed in this paper to cope with the intricate interactions among market players. The proposed model builds a joint trading market framework of carbon emission rights and green certificates to incentivize more market players to participate in cross-region trading. To better balance the interests among the market players, a multi-market player alliance based on the cooperative game theory is established, and a profit distribution method based on the contribution degree of system power balance is proposed. To ensure the balance of energy supply and demand for cross-regional trading, the distributed robust optimization method based on the Wasserstein metric is proposed considering the uncertainty of renewable energy generation. Finally, the feasibility of the proposed dispatching model is demonstrated with the modified IEEE 39 bus system and the Hami power grid as an example. The results show that the proposed model can obtain a conservative and economical operating scheme with fast operation time, and the joint trading mechanism can further save the operating cost.

Suggested Citation

  • Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021399
    DOI: 10.1016/j.energy.2022.125253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Schusser, Sandra & Jaraitė, Jūratė, 2018. "Explaining the interplay of three markets: Green certificates, carbon emissions and electricity," Energy Economics, Elsevier, vol. 71(C), pages 1-13.
    3. Barbose, Galen & Wiser, Ryan & Heeter, Jenny & Mai, Trieu & Bird, Lori & Bolinger, Mark & Carpenter, Alberta & Heath, Garvin & Keyser, David & Macknick, Jordan & Mills, Andrew & Millstein, Dev, 2016. "A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards," Energy Policy, Elsevier, vol. 96(C), pages 645-660.
    4. Coelho, António & Iria, José & Soares, Filipe, 2021. "Network-secure bidding optimization of aggregators of multi-energy systems in electricity, gas, and carbon markets," Applied Energy, Elsevier, vol. 301(C).
    5. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    6. Chi, Yuan-ying & Zhao, Hao & Hu, Yu & Yuan, Yong-ke & Pang, Yue-xia, 2022. "The impact of allocation methods on carbon emission trading under electricity marketization reform in China: A system dynamics analysis," Energy, Elsevier, vol. 259(C).
    7. Feijoo, Felipe & Das, Tapas K., 2015. "Emissions control via carbon policies and microgrid generation: A bilevel model and Pareto analysis," Energy, Elsevier, vol. 90(P2), pages 1545-1555.
    8. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    9. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    10. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
    11. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    12. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    13. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    14. Luo, Yan & Wang, Zhiyuan & Zhu, Jiamin & Lu, Tao & Xiao, Gang & Chu, Fengming & Wang, Ruixing, 2022. "Multi-objective robust optimization of a solar power tower plant under uncertainty," Energy, Elsevier, vol. 238(PA).
    15. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    16. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    17. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Guo, Xiaojun & Zhang, Mingming, 2019. "Low-carbon power dispatch with wind power based on carbon trading mechanism," Energy, Elsevier, vol. 170(C), pages 250-260.
    18. Tu, Qiang & Mo, Jianlei & Betz, Regina & Cui, Lianbiao & Fan, Ying & Liu, Yu, 2020. "Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate," Energy Policy, Elsevier, vol. 144(C).
    19. Liu, Dunnan & Liu, Mingguang & Xu, Erfeng & Pang, Bo & Guo, Xiaodan & Xiao, Bowen & Niu, Dongxiao, 2018. "Comprehensive effectiveness assessment of renewable energy generation policy: A partial equilibrium analysis in China," Energy Policy, Elsevier, vol. 115(C), pages 330-341.
    20. Zhang, Qi & Wang, Ge & Li, Yan & Li, Hailong & McLellan, Benjamin & Chen, Siyuan, 2018. "Substitution effect of renewable portfolio standards and renewable energy certificate trading for feed-in tariff," Applied Energy, Elsevier, vol. 227(C), pages 426-435.
    21. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).
    22. Zhang, Yachao & Xie, Shiwei & Shu, Shengwen, 2022. "Multi-stage robust optimization of a multi-energy coupled system considering multiple uncertainties," Energy, Elsevier, vol. 238(PC).
    23. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    24. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    25. Alizadeh Bidgoli, Mohsen & Ahmadian, Ali, 2022. "Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach," Energy, Elsevier, vol. 239(PB).
    26. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    27. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "An equilibrium market power model for power markets and tradable green certificates, including Kirchhoff's Laws and Nash-Cournot competition," Energy Economics, Elsevier, vol. 70(C), pages 270-288.
    28. Kong, Xiangyu & Xiao, Jie & Wang, Chengshan & Cui, Kai & Jin, Qiang & Kong, Deqian, 2019. "Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant," Applied Energy, Elsevier, vol. 249(C), pages 178-189.
    29. Liu, Yixin & Shi, Haoqi & Guo, Li & Xu, Tao & Zhao, Bo & Wang, Chengshan, 2022. "Towards long-period operational reliability of independent microgrid: A risk-aware energy scheduling and stochastic optimization method," Energy, Elsevier, vol. 254(PB).
    30. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yu & Chi, Yuanying & Zhou, Wenbing & Li, Jialin & Wang, Zhengzao & Yuan, Yongke, 2023. "The interactions between renewable portfolio standards and carbon emission trading in China: An evolutionary game theory perspective," Energy, Elsevier, vol. 271(C).
    2. Song, Xiao-hua & Han, Jing-jing & Zhang, Lu & Zhao, Cai-ping & Wang, Peng & Liu, Xiao-yan & Li, Qiao-chu, 2021. "Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 159(C).
    3. Wang, Yun & Xie, Haipeng & Sun, Xiaotian & Tang, Lingfeng & Bie, Zhaohong, 2022. "A cross-chain enabled day-ahead collaborative power-carbon-TGC market," Energy, Elsevier, vol. 258(C).
    4. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    5. Hu, Yu & Chi, Yuanying & Zhao, Hao & Zhou, Wenbing, 2022. "The development of renewable energy industry under renewable portfolio standards: From the perspective of provincial resource differences," Energy Policy, Elsevier, vol. 170(C).
    6. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    7. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    8. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2023. "Trading behavior strategy of power plants and the grid under renewable portfolio standards in China: A tripartite evolutionary game analysis," Energy, Elsevier, vol. 284(C).
    9. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    10. Wang, Ge & Zhang, Qi & Li, Yan & Mclellan, Benjamin C. & Pan, Xunzhang, 2019. "Corrective regulations on renewable energy certificates trading: Pursuing an equity-efficiency trade-off," Energy Economics, Elsevier, vol. 80(C), pages 970-982.
    11. Lei, Xu & Xin-gang, Zhao, 2023. "The synergistic effect between Renewable Portfolio Standards and carbon emission trading system: A perspective of China," Renewable Energy, Elsevier, vol. 211(C), pages 1010-1023.
    12. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    13. Matamala, Yolanda & Feijoo, Felipe, 2021. "A two-stage stochastic Stackelberg model for microgrid operation with chance constraints for renewable energy generation uncertainty," Applied Energy, Elsevier, vol. 303(C).
    14. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    15. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    16. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    17. Hong, Zitao & Peng, Zhen & Zhang, Liumei, 2022. "Game analysis on the choice of emission trading among industrial enterprises driven by data," Energy, Elsevier, vol. 239(PE).
    18. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    19. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    20. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.