IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011835.html
   My bibliography  Save this article

Optimization of supercooling, thermal conductivity, photothermal conversion, and phase change temperature of sodium acetate trihydrate for thermal energy storage applications

Author

Listed:
  • Yang, Haibin
  • Bao, Xiaohua
  • Cui, Hongzhi
  • Lo, Tommy Y.
  • Chen, Xiangsheng

Abstract

The demand for space heating and domestic hot water has caused an increase in building-energy consumption. Thermal energy storage systems can effectively solve the mismatch between heat supply and demand. Phase change materials (PCMs) can be served as the thermal storage media for thermal energy storage systems. In this study, the tailor-made sodium acetate trihydrate (SAT, a kind of PCM) was developed. Multi-wall carbon nanotubes (MWCNTs) was employed as the nucleation agent of SAT, meanwhile other carbon-based materials, including carbon fiber (CF), expanded graphite (EG), and graphene nanoplates (GNPs), were synergistically used as thermal conductivity and photothermal conversion enhancers. Ammonium chloride (NH4Cl) was innovatively adopted as a phase change temperature regulator for SAT. The results showed that the supercooling degree of SAT decreased to 0.9 °C with the presence of MWCNTs. The thermal conductivity of SAT improved by 54.9%, and the photothermal conversion efficiency increased to 89.3% after incorporating GNPs into the SAT/MWCNTs composite. Furthermore, phase change temperature of the SAT/MWCNTs composite, ranged from 57.5 °C to 45.1 °C, could be prepared by adjusting NH4Cl contents for satisfying different application scenarios. The results indicate that the prepared SAT composites can be potentially used in different thermal energy storage systems.

Suggested Citation

  • Yang, Haibin & Bao, Xiaohua & Cui, Hongzhi & Lo, Tommy Y. & Chen, Xiangsheng, 2022. "Optimization of supercooling, thermal conductivity, photothermal conversion, and phase change temperature of sodium acetate trihydrate for thermal energy storage applications," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011835
    DOI: 10.1016/j.energy.2022.124280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Wenlong & Yuan, Yanping & Sun, Liangliang & Cao, Xiaoling & Yang, Xiaojiao, 2016. "Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials," Renewable Energy, Elsevier, vol. 99(C), pages 1029-1037.
    2. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).
    3. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    4. Comodi, Gabriele & Bevilacqua, Maurizio & Caresana, Flavio & Paciarotti, Claudia & Pelagalli, Leonardo & Venella, Paola, 2016. "Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels," Applied Energy, Elsevier, vol. 164(C), pages 944-955.
    5. Chao, Weixiang & Yang, Haiyue & Cao, Guoliang & Sun, Xiaohan & Wang, Xin & Wang, Chengyu, 2020. "Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage," Energy, Elsevier, vol. 202(C).
    6. Xiao, Qiangqiang & Fan, Jiaxin & Li, Li & Xu, Tao & Yuan, Wenhui, 2018. "Solar thermal energy storage based on sodium acetate trihydrate phase change hydrogels with excellent light-to-thermal conversion performance," Energy, Elsevier, vol. 165(PB), pages 1240-1247.
    7. Liu, Yan & Wang, Mengyuan & Cui, Hongzhi & Yang, Liu & Liu, Jiaping, 2020. "Micro-/macro-level optimization of phase change material panel in building envelope," Energy, Elsevier, vol. 195(C).
    8. Shi, Lei & Hu, Yanwei & Bai, Yijie & He, Yurong, 2020. "Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage," Applied Energy, Elsevier, vol. 263(C).
    9. Li, Min & Wang, Chengcheng, 2019. "Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials," Renewable Energy, Elsevier, vol. 141(C), pages 1005-1012.
    10. Li, Minqi & Lin, Zhongqi & Sun, Yongjun & Wu, Fengping & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng, 2020. "Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems," Renewable Energy, Elsevier, vol. 157(C), pages 670-677.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Liu, Huan & Tian, Xinxin & Ouyang, Mize & Wang, Xiang & Wu, Dezhen & Wang, Xiaodong, 2021. "Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy," Renewable Energy, Elsevier, vol. 179(C), pages 47-64.
    3. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.
    4. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    5. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    6. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    7. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    8. Bing, Naici & Yang, Jie & Gao, Huan & Xie, Huaqing & Yu, Wei, 2021. "Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion," Renewable Energy, Elsevier, vol. 173(C), pages 926-933.
    9. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    10. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    11. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    12. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    13. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    14. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    15. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    16. Abdelwaheb Trigui & Makki Abdelmouleh, 2023. "Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    17. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
    19. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    20. Henrik Zsiborács & András Vincze & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "A Comparative Examination of the Electricity Saving Potentials of Direct Residential PV Energy Use in European Countries," Sustainability, MDPI, vol. 15(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.