IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222005837.html
   My bibliography  Save this article

Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine

Author

Listed:
  • Shen, Wenkai
  • Xing, Chang
  • Liu, Haiqing
  • Liu, Li
  • Hu, Qiming
  • Wu, Guohua
  • Yang, Yujia
  • Wu, Shaohua
  • Qiu, Penghua

Abstract

Exhaust gas recirculation (EGR) is an option proposed to augment the CO2 content in the exhaust gas for the efficient removal of CO2. In the field of micro-gas turbine (MGT), EGR is also a feasible solution to improve the part-load performance and fuel flexibility. This research combined EGR with an adjustable fuel feeding combustor to assess the part-load performance of a 300 kW MGT and the flame spatiotemporal characteristics. The radical chemiluminescence intensity of hydroxyl is selected to represent the heat release rate (HRR) in natural gas flames. The influence of EGR on HRR was investigated experimentally under various load ratios (50%–100%) and EGR ratios (0–20%). In addition, the temperature at the combustion chamber outlet is also measured. The results show that EGR can effectively reduce OTDF when the load ratio is high. Both the spatial distribution non-uniformity and fluctuation amplitude of HRR are suppressed after applying EGR. And EGR can also reduce the influence of mixing on HRR spatiotemporal characteristics. At last, the frequency characteristics of HRR are analyzed. The result shows that the flame frequency has a strong correlation with the characteristic frequency of turbulence.

Suggested Citation

  • Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005837
    DOI: 10.1016/j.energy.2022.123680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio & Cigolotti, Viviana & Nam, Suk Woo & Yoon, Kyung Joong, 2018. "Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier," Applied Energy, Elsevier, vol. 227(C), pages 80-91.
    2. Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
    3. Best, Thom & Finney, Karen N. & Ingham, Derek B. & Pourkashanian, Mohamed, 2016. "Impact of CO2-enriched combustion air on micro-gas turbine performance for carbon capture," Energy, Elsevier, vol. 115(P1), pages 1138-1147.
    4. Ditaranto, Mario & Heggset, Tarjei & Berstad, David, 2020. "Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of process performance," Energy, Elsevier, vol. 192(C).
    5. Askari, Omid & Vien, Kevin & Wang, Ziyu & Sirio, Matteo & Metghalchi, Hameed, 2016. "Exhaust gas recirculation effects on flame structure and laminar burning speeds of H2/CO/air flames at high pressures and temperatures," Applied Energy, Elsevier, vol. 179(C), pages 451-462.
    6. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    7. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    8. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    9. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    10. Basrawi, Firdaus & Yamada, Takanobu & Obara, Shin’ya, 2014. "Economic and environmental based operation strategies of a hybrid photovoltaic–microgas turbine trigeneration system," Applied Energy, Elsevier, vol. 121(C), pages 174-183.
    11. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    12. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    13. Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
    2. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    2. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    3. Rafał Ślefarski, 2019. "Study on the Combustion Process of Premixed Methane Flames with CO 2 Dilution at Elevated Pressures," Energies, MDPI, vol. 12(3), pages 1-17, January.
    4. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    5. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    6. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    7. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
    8. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    9. Pappa, Alessio & Cordier, Marie & Bénard, Pierre & Bricteux, Laurent & De Paepe, Ward, 2022. "How do water and CO2 impact the stability and emissions of the combustion in a micro gas turbine? — A Large Eddy Simulations comparison," Energy, Elsevier, vol. 248(C).
    10. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    11. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    12. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    13. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    14. Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
    15. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    16. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    17. Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
    18. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
    19. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    20. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.