IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i5p1631-1640.html
   My bibliography  Save this article

Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion

Author

Listed:
  • Arghode, Vaibhav K.
  • Gupta, Ashwani K.

Abstract

Colorless distributed combustion (CDC) investigated here is focused on gas turbine combustion applications due to its significant benefits for, much reduced NOx emissions and noise reduction, and significantly improved pattern factor. CDC is characterized by distributed reaction zone of combustion which leads to uniform thermal field and avoidance of hot spot regions to provide significant improvement in pattern factor, lower sound levels and reduced NOx emission. Mixing between the combustion air and product gases to form hot and diluted oxidant prior to its mixing with the fuel is critical so that one must determine the most suitable mixing conditions to minimize the ignition delay. Spontaneous ignition of the fuel occurs to provide distributed reaction combustion conditions. The above requirements can be met with different configuration of fuel and air injections with carefully characterized flow field distribution within the combustion zone. This study examines four different sample configurations to achieve colorless distributed combustion conditions that reveal no visible color of the flame. They include a baseline diffusion flame configuration and three other configurations that provide conditions close to distributed combustion conditions. For all four modes same fuel and air injection diameters are used to examine the effect of flow field configuration on combustion characteristics. The results are compared from the four different configurations on flow field and fuel/air mixing using numerical simulations and with experiments using global flame signatures, exhaust emissions, acoustic signatures, and thermal field. Both numerical simulations and experiments are performed at a constant heat load of 25Â kW, using methane as the fuel at atmospheric pressure using normal temperature air and fuel. Lower NOx and CO emissions, better thermal field uniformity, and lower acoustic levels have been observed when the flame approached CDC mode as compared to the baseline case of a diffusion flame. The reaction zone is observed to be uniformly distributed over the entire combustor volume when the visible flame signatures approached CDC mode.

Suggested Citation

  • Arghode, Vaibhav K. & Gupta, Ashwani K., 2010. "Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion," Applied Energy, Elsevier, vol. 87(5), pages 1631-1640, May.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1631-1640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00424-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1631-1640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.