IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222002067.html
   My bibliography  Save this article

How Germany achieved a record share of renewables during the COVID-19 pandemic while relying on the European interconnected power network

Author

Listed:
  • Halbrügge, Stephanie
  • Buhl, Hans Ulrich
  • Fridgen, Gilbert
  • Schott, Paul
  • Weibelzahl, Martin
  • Weissflog, Jan

Abstract

In 2020, Germany reached a maximum share of 50.5% intermittent renewables in electricity generation. Such a high share results in an increasing need for flexibility measures such as international transmission flexibility, i.e., electricity imports and exports. In fact, during the COVID-19 pandemic, Germany changed from a former electricity net exporter to a net importer. This paper, therefore, analyzes what we can learn from the resulting development of German electricity imports as a flexibility measure from a market, environmental, and network perspective. We analyze data on electricity imports/exports, generation, prices, and interconnection capacities of 38 bidding zones, respectively 11 countries within the ENTSO-E. In particular, we formulate three hypotheses to partition our overarching research question. Our results reveal that from a market perspective, Germany's increased need for transmission flexibility did not generally result in increased prices for German electricity imports. Also, from an environmental perspective, Germany increasingly relied on electricity imports from countries that exhibited a lower share of renewables. Finally, during the COVID-19 pandemic some of Germany's interconnection capacities to its neighboring countries exhibited a higher utilization. In view of our results, German policymakers may reflect on decarbonization policies considering a holistic European perspective.

Suggested Citation

  • Halbrügge, Stephanie & Buhl, Hans Ulrich & Fridgen, Gilbert & Schott, Paul & Weibelzahl, Martin & Weissflog, Jan, 2022. "How Germany achieved a record share of renewables during the COVID-19 pandemic while relying on the European interconnected power network," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002067
    DOI: 10.1016/j.energy.2022.123303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
    2. Alvarez, Gonzalo E., 2021. "A multi-objective formulation of improving flexibility in the operation of electric power systems: Application to mitigation measures during the coronavirus pandemic," Energy, Elsevier, vol. 227(C).
    3. Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
    4. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Review analysis of COVID-19 impact on electricity demand for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Liu, Shuo & Yang, Zhifang & Xia, Qing & Lin, Wei & Shi, Lianjun & Zeng, Dan, 2020. "Power trading region considering long-term contract for interconnected power networks," Applied Energy, Elsevier, vol. 261(C).
    6. Haas, Reinhard & Resch, Gustav & Panzer, Christian & Busch, Sebastian & Ragwitz, Mario & Held, Anne, 2011. "Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources – Lessons from EU countries," Energy, Elsevier, vol. 36(4), pages 2186-2193.
    7. Böckers, Veit & Haucap, Justus & Heimeshoff, Ulrich, 2013. "Benefits of an integrated European electricity market," DICE Discussion Papers 109, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    8. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    9. Halbrügge, Stephanie & Schott, Paul & Weibelzahl, Martin & Buhl, Hans Ulrich & Fridgen, Gilbert & Schöpf, Michael, 2021. "How did the German and other European electricity systems react to the COVID-19 pandemic?," Applied Energy, Elsevier, vol. 285(C).
    10. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Wu, Huijun & Gao, Mengping, 2021. "Sharing hydropower flexibility in interconnected power systems: A case study for the China Southern power grid," Applied Energy, Elsevier, vol. 288(C).
    11. Osorio, Sebastian & Pietzcker, Robert C. & Pahle, Michael & Edenhofer, Ottmar, 2020. "How to deal with the risks of phasing out coal in Germany," Energy Economics, Elsevier, vol. 87(C).
    12. Zhu Liu & Philippe Ciais & Zhu Deng & Ruixue Lei & Steven J. Davis & Sha Feng & Bo Zheng & Duo Cui & Xinyu Dou & Biqing Zhu & Rui Guo & Piyu Ke & Taochun Sun & Chenxi Lu & Pan He & Yuan Wang & Xu Yue , 2020. "Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    13. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    14. Chiaramonti, David & Maniatis, Kyriakos, 2020. "Security of supply, strategic storage and Covid19: Which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport?," Applied Energy, Elsevier, vol. 271(C).
    15. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    16. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    17. Santiago, I. & Moreno-Munoz, A. & Quintero-Jiménez, P. & Garcia-Torres, F. & Gonzalez-Redondo, M.J., 2021. "Electricity demand during pandemic times: The case of the COVID-19 in Spain," Energy Policy, Elsevier, vol. 148(PA).
    18. Liu, Xiaolei & Lin, Zi, 2021. "Impact of Covid-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with Bidirectional Long Short Term Memory," Energy, Elsevier, vol. 227(C).
    19. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    20. Prol, Javier López & O, Sungmin, 2020. "Impact of COVID-19 Measures on Short-Term Electricity Consumption in the Most Affected EU Countries and USA States," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 23(10).
    21. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    22. Zhang, Xingxing & Pellegrino, Filippo & Shen, Jingchun & Copertaro, Benedetta & Huang, Pei & Kumar Saini, Puneet & Lovati, Marco, 2020. "A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden," Applied Energy, Elsevier, vol. 280(C).
    23. Madurai Elavarasan, Rajvikram & Shafiullah, GM & Raju, Kannadasan & Mudgal, Vijay & Arif, M.T. & Jamal, Taskin & Subramanian, Senthilkumar & Sriraja Balaguru, V.S. & Reddy, K.S. & Subramaniam, Umashan, 2020. "COVID-19: Impact analysis and recommendations for power sector operation," Applied Energy, Elsevier, vol. 279(C).
    24. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    25. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Andrea Bollino & Maria Chiara D’Errico, 2022. "Electricity Demand Elasticity, Mobility, and COVID-19 Contagion Nexus in the Italian Day-Ahead Electricity Market," Energies, MDPI, vol. 15(20), pages 1-26, October.
    2. Kunle Babaremu & Nmesoma Olumba & Ikenna Chris-Okoro & Konyegwachie Chuckwuma & Tien-Chien Jen & Oluseyi Oladijo & Esther Akinlabi, 2022. "Overview of Solar–Wind Hybrid Products: Prominent Challenges and Possible Solutions," Energies, MDPI, vol. 15(16), pages 1-25, August.
    3. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    4. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Vinicius B.F. & Pereira, Lígia C. & Andrade, Jorge V.B. & Bonatto, Benedito D., 2022. "Future assessment of the impact of the COVID-19 pandemic on the electricity market based on a stochastic socioeconomic model," Applied Energy, Elsevier, vol. 313(C).
    2. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    3. Lazo, Joaquín & Aguirre, Gerson & Watts, David, 2022. "An impact study of COVID-19 on the electricity sector: A comprehensive literature review and Ibero-American survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Cerqueira, Pedro André & Pereira da Silva, Patrícia, 2023. "Assessment of the impact of COVID-19 lockdown measures on electricity consumption – Evidence from Portugal and Spain," Energy, Elsevier, vol. 282(C).
    5. Collen Zalengera & Maxon L. Chitawo & Isaac Chitedze & Long Seng To & Vincent Mwale & Kondwani T. Gondwe & Timeyo Maroyi, 2021. "Unbending the Winding Path of a Low-Income Country’s Energy Sector amid the COVID-19 Pandemic: Perspectives from Malawi," Energies, MDPI, vol. 14(21), pages 1-15, November.
    6. Micheli, Leonardo & Solas, Álvaro F. & Soria-Moya, Alberto & Almonacid, Florencia & Fernandez, Eduardo F., 2021. "Short-Term Impact of the COVID-19 Lockdown on the Energy and Economic Performance of Photovoltaics in the Spanish Electricity Sector," MPRA Paper 107969, University Library of Munich, Germany.
    7. Bazzana, Davide & Cohen, Jed J. & Golinucci, Nicolò & Hafner, Manfred & Noussan, Michel & Reichl, Johannes & Rocco, Matteo Vincenzo & Sciullo, Alessandro & Vergalli, Sergio, 2022. "A multi-disciplinary approach to estimate the medium-term impact of COVID-19 on transport and energy: A case study for Italy," Energy, Elsevier, vol. 238(PC).
    8. Halbrügge, Stephanie & Schott, Paul & Weibelzahl, Martin & Buhl, Hans Ulrich & Fridgen, Gilbert & Schöpf, Michael, 2021. "How did the German and other European electricity systems react to the COVID-19 pandemic?," Applied Energy, Elsevier, vol. 285(C).
    9. Abulibdeh, Ammar, 2021. "Spatiotemporal analysis of water-electricity consumption in the context of the COVID-19 pandemic across six socioeconomic sectors in Doha City, Qatar," Applied Energy, Elsevier, vol. 304(C).
    10. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Garcia-Rendon, John & Rey Londoño, Felipe & Arango Restrepo, Luis José & Bohorquez Correa, Santiago, 2023. "Sectoral analysis of electricity consumption during the COVID-19 pandemic: Evidence for unregulated and regulated markets in Colombia," Energy, Elsevier, vol. 268(C).
    12. Fatin Samara & Bassam A. Abu-Nabah & Waleed El-Damaty & Mayyada Al Bardan, 2022. "Assessment of the Impact of the Human Coronavirus (COVID-19) Lockdown on the Energy Sector: A Case Study of Sharjah, UAE," Energies, MDPI, vol. 15(4), pages 1-19, February.
    13. Georgeta Soava & Anca Mehedintu & Mihaela Sterpu & Eugenia Grecu, 2021. "The Impact of the COVID-19 Pandemic on Electricity Consumption and Economic Growth in Romania," Energies, MDPI, vol. 14(9), pages 1-25, April.
    14. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    15. Zhiang Zhang & Ali Cheshmehzangi & Saeid Pourroostaei Ardakani, 2021. "A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China," Energies, MDPI, vol. 14(23), pages 1-22, December.
    16. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Critical Analysis of the Impact of Pandemic on China’s Electricity Usage Patterns and the Global Development of Renewable Energy," IJERPH, MDPI, vol. 19(8), pages 1-30, April.
    17. García, Sebastián & Parejo, Antonio & Personal, Enrique & Ignacio Guerrero, Juan & Biscarri, Félix & León, Carlos, 2021. "A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level," Applied Energy, Elsevier, vol. 287(C).
    18. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    19. Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Janusz Buchoski & Łukasz Maciąg & Piotr Dukat, 2021. "Impact of the Lockdown during the COVID-19 Pandemic on Electricity Use by Residential Users," Energies, MDPI, vol. 14(4), pages 1-32, February.
    20. Körner, Marc-Fabian & Sedlmeir, Johannes & Weibelzahl, Martin & Fridgen, Gilbert & Heine, Moreen & Neumann, Christoph, 2022. "Systemic risks in electricity systems: A perspective on the potential of digital technologies," Energy Policy, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.