IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001645.html
   My bibliography  Save this article

Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing

Author

Listed:
  • M, Jisma
  • Mohan, Vivek
  • Thomas, Mini Shaji
  • Madhu M, Nimal

Abstract

This paper proposes a master-slave approach to quantify, combine and balance energy-risk and cost-risk involved in a generation portfolio with renewable and fuel-based technologies. Subjective preferences of the investor on risk, cost and emission are traded-off using pareto-optimization and quantified using multi-criteria decision-making techniques. Temporal variations in renewable energy production led to ‘energy-risk’ (kWh), characterized by energy-return-risk Efficient Frontier (EF). The uncertainty in the energy production cost of the fuel-based sources (FBS) results in ‘cost-risk’ ($/kWh), represented by cost-risk EF. These efficient frontiers are combined using the concepts of Sharpe ratio and tangency portfolio. The master portfolio (MP) gives a percentage share for the total renewable and total conventional generation. The slave portfolio (SP) assigns internal weights within the renewable (solar and wind) and within the fuel-based (coal, natural gas, and oil) generations. The best solution is selected from the pareto-front by calibrating the investor preferences using Analytic Hierarchy Process (AHP) and then verified using Elimination and Choice Translating Reality (ELECTRE). It is understood that a completely customizable multi-criteria portfolio selection can be achieved by incorporating subjective views of the investors, eliminating one-sided energy portfolios.

Suggested Citation

  • M, Jisma & Mohan, Vivek & Thomas, Mini Shaji & Madhu M, Nimal, 2022. "Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001645
    DOI: 10.1016/j.energy.2022.123261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    2. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    3. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    6. Unni, Arjun C. & Ongsakul, Weerakorn & Madhu M., Nimal, 2020. "Fuzzy-based novel risk and reward definition applied for optimal generation-mix estimation," Renewable Energy, Elsevier, vol. 148(C), pages 665-673.
    7. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    8. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    9. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).
    10. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    11. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "Portfolio assessments for future generation investment in newly industrializing countries – A case study of Thailand," Energy, Elsevier, vol. 44(1), pages 1044-1058.
    12. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    13. Sinsel, Simon R. & Yan, Xuqian & Stephan, Annegret, 2019. "Building resilient renewable power generation portfolios: The impact of diversification on investors’ risk and return," Applied Energy, Elsevier, vol. 254(C).
    14. Arnesano, M. & Carlucci, A.P. & Laforgia, D., 2012. "Extension of portfolio theory application to energy planning problem – The Italian case," Energy, Elsevier, vol. 39(1), pages 112-124.
    15. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    16. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    17. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    18. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.
    19. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    2. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    3. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    4. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    5. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    6. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    7. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    8. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    9. Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
    10. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    11. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    12. Unni, Arjun C. & Ongsakul, Weerakorn & Madhu M., Nimal, 2020. "Fuzzy-based novel risk and reward definition applied for optimal generation-mix estimation," Renewable Energy, Elsevier, vol. 148(C), pages 665-673.
    13. Shahnazi, Rouhollah & Alimohammadlou, Moslem, 2022. "Investigating risks in renewable energy in oil-producing countries through multi-criteria decision-making methods based on interval type-2 fuzzy sets: A case study of Iran," Renewable Energy, Elsevier, vol. 191(C), pages 1009-1027.
    14. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "Optimal mix of climate-related energy in global electricity systems," Renewable Energy, Elsevier, vol. 160(C), pages 955-963.
    15. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    16. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    17. Shakouri, Mahmoud & Lee, Hyun Woo & Choi, Kunhee, 2015. "PACPIM: New decision-support model of optimized portfolio analysis for community-based photovoltaic investment," Applied Energy, Elsevier, vol. 156(C), pages 607-617.
    18. Rahadian Dadan & Firli Anisah & Dinçer Hasan & Yüksel Serhat & Hacıoğlu Ümit & Aksoy Tamer & Gherghina Ştefan Cristian, 2023. "An Evaluation of E7 Countries’ Sustainable Energy Investments: A Decision-Making Approach with Spherical Fuzzy Sets," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 17(1), pages 1-21, January.
    19. Kim, Yeong Jae & Cho, Seong-Hoon & Sharma, Bijay P., 2021. "Constructing efficient portfolios of low-carbon technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Horasan, Muhammed Bilal & Kilic, Huseyin Selcuk, 2022. "A multi-objective decision-making model for renewable energy planning: The case of Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 484-504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.