IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221016868.html
   My bibliography  Save this article

Predicting winners and losers under time-of-use tariffs using smart meter data

Author

Listed:
  • Kiguchi, Y.
  • Weeks, M.
  • Arakawa, R.

Abstract

Time-of-use electricity tariffs may become more widespread as smart meters are installed across deregulated domestic electricity markets. Time-of-use tariffs and other methods of time-dependant pricing can be mutually beneficial, realising a cost reduction for both energy companies and customers if the customer responds to the price signalling. However, such tariffs are likely to create positive and negative financial outcomes for individuals because of customer engagement and potential peak shifting capacity. Identifying potential reducers or non-reducers beforehand can optimise a time-of-use programme design, in turn maximising the outcome of the programme. This paper provides a statistical model to identify the characteristics of so-called winners and losers - or households that would be better or worse off under a time-of-use tariff - using only ex ante information. The model's accuracy reaches a reliable level using historical electricity load and basic household characteristics. This accuracy can be further improved if online activity data is available - providing justification for digital interaction and gamification in time-of-use programmes. This paper also publishes a new public dataset of 1423 households in Japan, including historical smart meter data, household characteristics and online activity variables during the time-of-use intervention period in 2017 and 2018.

Suggested Citation

  • Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016868
    DOI: 10.1016/j.energy.2021.121438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    2. Faruqui, Ahmad & Hledik, Ryan & Newell, Sam & Pfeifenberger, Hannes, 2007. "The Power of 5 Percent," The Electricity Journal, Elsevier, vol. 20(8), pages 68-77, October.
    3. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Energy and uncertainty management through domestic demand response in the residential building," Energy, Elsevier, vol. 192(C).
    4. Ioannis Lampropoulos & Tarek Alskaif & Machteld den Broek & Wilfried Sark & Herre Oostendorp, 2019. "A Method for Developing a Game-Enhanced Tool Targeting Consumer Engagement in Demand Response Mechanisms," Progress in IS, in: Anastasia Stratigea & Dimitris Kavroudakis (ed.), Mediterranean Cities and Island Communities, chapter 0, pages 213-235, Springer.
    5. O'Neill, E. & Weeks, M., 2018. "Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes," Cambridge Working Papers in Economics 1865, Faculty of Economics, University of Cambridge.
    6. Lee V. White & Nicole D. Sintov, 2020. "Varied health and financial impacts of time-of-use energy rates across sociodemographic groups raise equity concerns," Nature Energy, Nature, vol. 5(1), pages 16-17, January.
    7. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    8. Mustafa Alparslan Zehir & Kadir Baris Ortac & Hakan Gul & Alp Batman & Zafer Aydin & João Carlos Portela & Filipe Joel Soares & Mustafa Bagriyanik & Unal Kucuk & Aydogan Ozdemir, 2019. "Development and Field Demonstration of a Gamified Residential Demand Management Platform Compatible with Smart Meters and Building Automation Systems," Energies, MDPI, vol. 12(5), pages 1-18, March.
    9. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    10. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    11. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    12. Wang, Yongli & Li, Fang & Yang, Jiale & Zhou, Minhan & Song, Fuhao & Zhang, Danyang & Xue, Lu & Zhu, Jinrong, 2020. "Demand response evaluation of RIES based on improved matter-element extension model," Energy, Elsevier, vol. 212(C).
    13. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    14. Ashok, S., 2006. "Peak-load management in steel plants," Applied Energy, Elsevier, vol. 83(5), pages 413-424, May.
    15. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    16. Yilmaz, Selin & Xu, Xiaojing & Cabrera, Daniel & Chanez, Cédric & Cuony, Peter & Patel, Martin K., 2020. "Analysis of demand-side response preferences regarding electricity tariffs and direct load control: Key findings from a Swiss survey," Energy, Elsevier, vol. 212(C).
    17. Campillo, Javier & Dahlquist, Erik & Wallin, Fredrik & Vassileva, Iana, 2016. "Is real-time electricity pricing suitable for residential users without demand-side management?," Energy, Elsevier, vol. 109(C), pages 310-325.
    18. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    19. Johnson, Daniel & Horton, Ella & Mulcahy, Rory & Foth, Marcus, 2017. "Gamification and serious games within the domain of domestic energy consumption: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 249-264.
    20. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alcántara Mata, Antonio & Ruiz Mora, Carlos, 2022. "A Neural Network-Based Distributional Constraint Learning Methodology for Mixed-Integer Stochastic Optimization," DES - Working Papers. Statistics and Econometrics. WS 36072, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Ahammed, Md. Tanvir & Khan, Imran, 2022. "Ensuring power quality and demand-side management through IoT-based smart meters in a developing country," Energy, Elsevier, vol. 250(C).
    3. Bugaje, Bilal & Rutherford, Peter & Clifford, Mike, 2022. "Convenience in a residence with demand response: A system dynamics simulation model," Applied Energy, Elsevier, vol. 314(C).
    4. Choi, Dong Gu & Murali, Karthik, 2022. "The impact of heterogeneity in consumer characteristics on the design of optimal time-of-use tariffs," Energy, Elsevier, vol. 254(PB).
    5. Shi, Renwei & Jiao, Zaibin, 2023. "Individual household demand response potential evaluation and identification based on machine learning algorithms," Energy, Elsevier, vol. 266(C).
    6. Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
    7. Huang, He & Wang, Honglei & Hu, Yu-Jie & Li, Chengjiang & Wang, Xiaolin, 2022. "Optimal plan for energy conservation and CO2 emissions reduction of public buildings considering users' behavior: Case of China," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    2. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
    3. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    5. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    6. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    7. Anna Mutule & Marcos Domingues & Fernando Ulloa-Vásquez & Dante Carrizo & Luis García-Santander & Ana-Maria Dumitrescu & Diego Issicaba & Lucas Melo, 2021. "Implementing Smart City Technologies to Inspire Change in Consumer Energy Behaviour," Energies, MDPI, vol. 14(14), pages 1-15, July.
    8. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
    9. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    10. Marina Dorokhova & Fernando Ribeiro & António Barbosa & João Viana & Filipe Soares & Nicolas Wyrsch, 2021. "Real-World Implementation of an ICT-Based Platform to Promote Energy Efficiency," Energies, MDPI, vol. 14(9), pages 1-23, April.
    11. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    12. Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
    13. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    14. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    15. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).
    16. Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
    17. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    18. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    19. Mustafa Alparslan Zehir & Kadir Baris Ortac & Hakan Gul & Alp Batman & Zafer Aydin & João Carlos Portela & Filipe Joel Soares & Mustafa Bagriyanik & Unal Kucuk & Aydogan Ozdemir, 2019. "Development and Field Demonstration of a Gamified Residential Demand Management Platform Compatible with Smart Meters and Building Automation Systems," Energies, MDPI, vol. 12(5), pages 1-18, March.
    20. Sherif Goubran & Carmela Cucuzzella & Mohamed M. Ouf, 2021. "Eyes on the Goal! Exploring Interactive Artistic Real-Time Energy Interfaces for Target-Specific Actions in the Built Environment," Sustainability, MDPI, vol. 13(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.