IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp762-770.html
   My bibliography  Save this article

Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator

Author

Listed:
  • Guo, Xinru
  • Zhang, Houcheng
  • Yuan, Jinliang
  • Wang, Jiatang
  • Zhao, Jiapei
  • Wang, Fu
  • Miao, He
  • Hou, Shujin

Abstract

A new combined system consisting of a high-temperature proton exchange membrane fuel cell (HT-PEMFC), a regenerator and a thermoelectric generator (TEG) is developed. The mathematical relationship between the HT-PEMFC operating current density and the TEG dimensionless current is derived, and the operating current density range of HT-PEMFC in which the TEG allowed to work is determined. Power output and efficiency of the combined system are formulated under different operating conditions. Compared with the stand-alone HT-PEMFC, the proposed combined system allows the equivalent power density to increase by 21%. The optimum criteria and general performance characteristics for the complete system are specified. Moreover, the effects of the operating current density, doping level, relative humidity, operating temperature, heat conductivity and figure of merit of the thermoelectric materials on the combined system performance characteristics are revealed. The obtained results may provide some theoretical insights into the design and integration of such an actual combined system.

Suggested Citation

  • Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:762-770
    DOI: 10.1016/j.energy.2019.05.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930893X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    2. Jiawei Zhang & Lirong Song & Steffen Hindborg Pedersen & Hao Yin & Le Thanh Hung & Bo Brummerstedt Iversen, 2017. "Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    4. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio, 2015. "Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production," Energy, Elsevier, vol. 88(C), pages 874-884.
    5. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    6. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2014. "Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems," Energy, Elsevier, vol. 68(C), pages 989-997.
    7. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    8. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    9. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    10. Yang, Puqing & Zhang, Houcheng, 2015. "Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system," Energy, Elsevier, vol. 85(C), pages 458-467.
    11. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Thermoelectric-generator with linear phenomenological heat-transfer law," Applied Energy, Elsevier, vol. 81(4), pages 358-364, August.
    12. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    13. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    14. Sopian, Kamaruzzaman & Wan Daud, Wan Ramli, 2006. "Challenges and future developments in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 31(5), pages 719-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xinru & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Yuan, Jinliang & Hou, Shujin, 2020. "A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses," Energy, Elsevier, vol. 195(C).
    2. Iranzo, Alfredo & Navas, Sergio J. & Rosa, Felipe & Berber, Mohamed R., 2021. "Determination of time constants of diffusion and electrochemical processes in Polymer Electrolyte Membrane Fuel Cells," Energy, Elsevier, vol. 221(C).
    3. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    4. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    5. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    6. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    7. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    8. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    2. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    3. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    4. Guo, Xinru & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Yuan, Jinliang & Hou, Shujin, 2020. "A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses," Energy, Elsevier, vol. 195(C).
    5. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    6. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    7. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    8. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    10. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    11. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    12. Laura Zecchi & Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2022. "Modeling of a Hybrid Fuel Cell Powertrain with Power Split Logic for Onboard Energy Management Using a Longitudinal Dynamics Simulation Tool," Energies, MDPI, vol. 15(17), pages 1-18, August.
    13. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    14. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    15. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    17. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    18. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    19. Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
    20. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:762-770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.