IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp1037-1052.html
   My bibliography  Save this article

Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system

Author

Listed:
  • Atalay, Halil

Abstract

This study presents the energy and exergy-based performances of a solar dryer integrated with packed bed (TES) as thermal energy storage medium. As a sample application, drying kinetics of orange slices was determined. The aim of this study is to evaluate the thermal storage potential of the packed bed by focusing on energy consumption and exergy-sustainability indicators. Experiments were repeated twice a day (sunshine hours and off-sunshine hours). The results indicated that solar dryer integrated with packed bed reduced the moisture content of orange slices from 93.5% to 10.28% (at the first experiment) and 10.76% (at the second experiment), respectively. Total useful energy consumption for both the two status were detected as 89.892 MJ and 88.11 MJ, respectively. The exergy efficiency for the drying system during the sunshine hours ranged from 50.18 to 66.58%.The exergy efficiency of the drying process, in case of using the stored thermal energy, also changed between 54.71 and 68.37%. Moreover, a mathematical model was developed to predict the change of the moisture ratio of orange slices during time. According to the results of the model, Modified Henderson and Pabis Model presented the optimum parameters for determining the drying kinetics of orange slices.

Suggested Citation

  • Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1037-1052
    DOI: 10.1016/j.energy.2019.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    2. Atalay, Halil & Turhan Çoban, Mustafa & Kıncay, Olcay, 2017. "Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system," Energy, Elsevier, vol. 134(C), pages 382-391.
    3. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    4. Natarajan, Karunaraja & Thokchom, Subhaschandra Singh & Verma, Tikendra Nath & Nashine, Prerana, 2017. "Convective solar drying of Vitis vinifera &Momordica charantia using thermal storage materials," Renewable Energy, Elsevier, vol. 113(C), pages 1193-1200.
    5. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    6. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    7. Baniasadi, Ehsan & Ranjbar, Saeed & Boostanipour, Omid, 2017. "Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage," Renewable Energy, Elsevier, vol. 112(C), pages 143-150.
    8. Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
    9. Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
    10. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    11. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    12. Karthikeyan, A.K. & Murugavelh, S., 2018. "Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 128(PA), pages 305-312.
    13. Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    2. Olivkar, Piyush R. & Katekar, Vikrant P. & Deshmukh, Sandip S. & Palatkar, Sanyukta V., 2022. "Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & Zhu, T.T. & Ma, C., 2020. "Thermal performance of a closed collector–storage solar air heating system with latent thermal storage: An experimental study," Energy, Elsevier, vol. 202(C).
    4. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    6. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    7. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    8. Benhamza, Abderrahmane & Boubekri, Abdelghani & Atia, Abdelmalek & El Ferouali, Hicham & Hadibi, Tarik & Arıcı, Müslüm & Abdenouri, Naji, 2021. "Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential," Renewable Energy, Elsevier, vol. 169(C), pages 1190-1209.
    9. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    10. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    11. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    12. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    13. Ndukwu, M.C. & Onyenwigwe, D. & Abam, F.I. & Eke, A.B. & Dirioha, C., 2020. "Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage," Renewable Energy, Elsevier, vol. 154(C), pages 553-568.
    14. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    15. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    16. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
    17. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    18. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    3. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    4. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    5. Lakshmi, D.V.N. & Muthukumar, P. & Nayak, Prakash Kumar, 2021. "Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper," Renewable Energy, Elsevier, vol. 167(C), pages 728-739.
    6. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    7. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
    8. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    9. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    10. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    11. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    12. Ndukwu, M.C. & Onyenwigwe, D. & Abam, F.I. & Eke, A.B. & Dirioha, C., 2020. "Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage," Renewable Energy, Elsevier, vol. 154(C), pages 553-568.
    13. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    15. Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
    16. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    17. Sabareesh, V. & Milan, K. John & Muraleedharan, C. & Rohinikumar, B., 2021. "Improved solar drying performance by ultrasonic desiccant dehumidification in indirect forced convection solar drying of ginger with phase change material," Renewable Energy, Elsevier, vol. 169(C), pages 1280-1293.
    18. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
    19. Murali, S. & Amulya, P.R. & Alfiya, P.V. & Delfiya, D.S. Aniesrani & Samuel, Manoj P., 2020. "Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps," Renewable Energy, Elsevier, vol. 147(P1), pages 2417-2428.
    20. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1037-1052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.