IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v154y2018icp415-423.html
   My bibliography  Save this article

Potential of predictive control for improvement of seasonal coefficient of performance of air source heat pump in Central European climate zone

Author

Listed:
  • Pospíšil, Jiří
  • Špiláček, Michal
  • Kudela, Libor

Abstract

This paper compares different operation models of the air-to-water heat pump (HP). Detail focus of this study aims at a potential to increase seasonal coefficient of performance (SCOP) by utilising the predictive control. The considered predictive control uses an outdoor air temperature forecast for the upcoming 48 h. The predictive control operates the heat pump so that it runs, preferably, during the periods of the day with the highest air temperature. For a detailed assessment, a model of the heat supply system with a heat pump supplemented by a heat accumulator has been developed. The mathematical model involves detailed algorithm for time-dependent quantification of the heat demand for the considered model building. Dataset of real operation tests of the HP helps correctly evaluate the coefficient of performance (COP). An original algorithm of predictive control has been developed and tested for different operating parameters and different capacities of the heat accumulator. A long-term record of air temperatures from the last ten years is employed to evaluate the model. The mathematical model allows for a complex parametrical study to evaluate the relations of SCOP - accumulator capacity, SCOP - method of heat pump control.

Suggested Citation

  • Pospíšil, Jiří & Špiláček, Michal & Kudela, Libor, 2018. "Potential of predictive control for improvement of seasonal coefficient of performance of air source heat pump in Central European climate zone," Energy, Elsevier, vol. 154(C), pages 415-423.
  • Handle: RePEc:eee:energy:v:154:y:2018:i:c:p:415-423
    DOI: 10.1016/j.energy.2018.04.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    2. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    3. Sánta, Róbert & Garbai, László & Fürstner, Igor, 2015. "Optimization of heat pump system," Energy, Elsevier, vol. 89(C), pages 45-54.
    4. Thygesen, Richard & Karlsson, Björn, 2016. "Simulation of a proposed novel weather forecast control for ground source heat pumps as a mean to evaluate the feasibility of forecast controls’ influence on the photovoltaic electricity self-consumpt," Applied Energy, Elsevier, vol. 164(C), pages 579-589.
    5. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    6. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    7. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    8. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    9. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yijiang Zeng & Shengyu Li & Jun Lu & Xiaodong Li & Dingding Xing & Jipan Xiao & Zhanhao Zhang & Leihong Li & Xuhui Shi, 2023. "Research on Energy Savings of an Air-Source Heat Pump Hot Water System in a College Student’s Dormitory Building," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    2. Rakesh Sinha & Birgitte Bak-Jensen & Jayakrishnan Radhakrishna Pillai & Hamidreza Zareipour, 2019. "Flexibility from Electric Boiler and Thermal Storage for Multi Energy System Interaction," Energies, MDPI, vol. 13(1), pages 1-21, December.
    3. Jiří Pospíšil & Michal Špiláček & Pavel Charvát, 2019. "Seasonal COP of an Air-to-Water Heat Pump when Using Predictive Control Preferring Power Production from Renewable Sources in the Czech Republic," Energies, MDPI, vol. 12(17), pages 1-13, August.
    4. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    5. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Kudela, Libor & Špiláček, Michal & Pospíšil, Jiří, 2021. "Influence of control strategy on seasonal coefficient of performance for a heat pump with low-temperature heat storage in the geographical conditions of Central Europe," Energy, Elsevier, vol. 234(C).
    7. Valeria Palomba & Efstratios Varvagiannis & Sotirios Karellas & Andrea Frazzica, 2019. "Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models," Energies, MDPI, vol. 12(6), pages 1-28, March.
    8. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    9. Liu, Hongxun & Mauzerall, Denise L., 2020. "Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region," Energy Economics, Elsevier, vol. 90(C).
    10. Oravec, Juraj & Bakošová, Monika & Galčíková, Lenka & Slávik, Michal & Horváthová, Michaela & Mészáros, Alajos, 2019. "Soft-constrained robust model predictive control of a plate heat exchanger: Experimental analysis," Energy, Elsevier, vol. 180(C), pages 303-314.
    11. Sun, Xiaoyu & Wang, Zhichao & Li, Xiaofeng & Xu, Zhaowei & Yang, Qiang & Yang, Yingxia, 2021. "Seasonal heating performance prediction of air-to-water heat pumps based on short-term dynamic monitoring," Renewable Energy, Elsevier, vol. 180(C), pages 829-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    2. Psimopoulos, Emmanouil & Bee, Elena & Widén, Joakim & Bales, Chris, 2019. "Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system," Applied Energy, Elsevier, vol. 249(C), pages 355-367.
    3. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
    5. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    6. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    7. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    8. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    9. Efkarpidis, Nikolaos A. & Vomva, Styliani A. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2022. "Optimal day-to-day scheduling of multiple energy assets in residential buildings equipped with variable-speed heat pumps," Applied Energy, Elsevier, vol. 312(C).
    10. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    11. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    12. Sebastian Kuboth & Theresa Weith & Florian Heberle & Matthias Welzl & Dieter Brüggemann, 2020. "Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation," Energies, MDPI, vol. 13(22), pages 1-17, November.
    13. Cristian Sánchez & Lionel Bloch & Jordan Holweger & Christophe Ballif & Nicolas Wyrsch, 2019. "Optimised Heat Pump Management for Increasing Photovoltaic Penetration into the Electricity Grid," Energies, MDPI, vol. 12(8), pages 1-22, April.
    14. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    15. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    16. Parantapa Sawant & Oscar Villegas Mier & Michael Schmidt & Jens Pfafferott, 2021. "Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC," Energies, MDPI, vol. 14(23), pages 1-15, November.
    17. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    18. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    19. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    20. De Schepper, Guillaume & Paulus, Claire & Bolly, Pierre-Yves & Hermans, Thomas & Lesparre, Nolwenn & Robert, Tanguy, 2019. "Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments," Applied Energy, Elsevier, vol. 242(C), pages 534-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:415-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.