IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp169-178.html
   My bibliography  Save this article

The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments

Author

Listed:
  • Rocha, P.A. Costa
  • Carneiro de Araujo, J.W.
  • Lima, R.J. Pontes
  • Vieira da Silva, M.E.
  • Albiero, D.
  • de Andrade, C.F.
  • Carneiro, F.O.M.

Abstract

Due to the growing importance of wind power as a clean and renewable energy source, the use of small-scale wind turbines in urban environments has increased lately. The blade pitch control is an effective method to improve the aerodynamic response of a wind turbine, usually applied to large-scale wind turbines. This study presents the effects of varied blade pitch on the aerodynamic performance of a small-size wind turbine. The blades were sketched out according to the Blade Element Moment (BEM) theory, applying the aerodynamic profile NREL-S809 and designed for a tip speed ratio of eight. To analyze the influence of the blade pitch angle on the energy conversion, a comparative study was carried out varying the pitch angle to five different values. Using the analysis of variance (ANOVA), it was possible to demonstrate that blade pitch control could be an effective method also for small-sized wind turbines. A performance chart from the results of blade pitch experiments shows that the power coefficient varies significantly when the angle changes. As conclusion, it is highlighted that an enhanced behavior could be attained by the use of a pitch angle controller resulting in a better recovery of the energy available in the wind.

Suggested Citation

  • Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:169-178
    DOI: 10.1016/j.energy.2018.01.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lubitz, William David, 2014. "Impact of ambient turbulence on performance of a small wind turbine," Renewable Energy, Elsevier, vol. 61(C), pages 69-73.
    2. Simic, Zdenko & Havelka, Juraj George & Bozicevic Vrhovcak, Maja, 2013. "Small wind turbines – A unique segment of the wind power market," Renewable Energy, Elsevier, vol. 50(C), pages 1027-1036.
    3. Lee, Jaejoon & Son, Eunkuk & Hwang, Byungho & Lee, Soogab, 2013. "Blade pitch angle control for aerodynamic performance optimization of a wind farm," Renewable Energy, Elsevier, vol. 54(C), pages 124-130.
    4. Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
    5. Abdelkafi, Achraf & Krichen, Lotfi, 2011. "New strategy of pitch angle control for energy management of a wind farm," Energy, Elsevier, vol. 36(3), pages 1470-1479.
    6. Nagai, Baku M. & Ameku, Kazumasa & Roy, Jitendro Nath, 2009. "Performance of a 3Â kW wind turbine generator with variable pitch control system," Applied Energy, Elsevier, vol. 86(9), pages 1774-1782, September.
    7. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2010. "Power optimization of wind turbines with data mining and evolutionary computation," Renewable Energy, Elsevier, vol. 35(3), pages 695-702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopez, Daniel & Kuo, Jim & Li, Ni, 2019. "A novel wake model for yawed wind turbines," Energy, Elsevier, vol. 178(C), pages 158-167.
    2. Yilmaz, Oktay, 2023. "Low-speed, low induction multi-blade rotor for energy efficient small wind turbines," Energy, Elsevier, vol. 282(C).
    3. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    4. Hailay Kiros Kelele & Lars Frøyd & Mulu Bayray Kahsay & Torbjørn Kristian Nielsen, 2022. "Characterization of Aerodynamics of Small Wind Turbine Blade for Enhanced Performance and Low Cost of Energy," Energies, MDPI, vol. 15(21), pages 1-23, October.
    5. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    6. Carneiro, F.O.M. & Moura, L.F.M. & Costa Rocha, P.A. & Pontes Lima, R.J. & Ismail, K.A.R., 2019. "Application and analysis of the moving mesh algorithm AMI in a small scale HAWT: Validation with field test's results against the frozen rotor approach," Energy, Elsevier, vol. 171(C), pages 819-829.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    2. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.
    3. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    4. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    5. Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
    6. Rieck, Jenny & Taube, Lina & Behrendt, Frank, 2020. "Feasibility analysis of a heat pump powered by wind turbines and PV- Applications for detached houses in Germany," Renewable Energy, Elsevier, vol. 162(C), pages 1104-1112.
    7. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    8. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    9. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    10. Dalibor Petković & Siti Hafizah Ab Hamid & Žarko Ćojbašić & Nenad T. Pavlović, 2014. "RETRACTED ARTICLE: Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 463-475, November.
    11. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    12. Wu, Zhenlong, 2019. "Rotor power performance and flow physics in lateral sinusoidal gusts," Energy, Elsevier, vol. 176(C), pages 917-928.
    13. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    14. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    15. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    16. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    17. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    18. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    19. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    20. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:169-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.