IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp1240-1255.html
   My bibliography  Save this article

Optimal windy sites in Algeria: Potential and perspectives

Author

Listed:
  • Daaou Nedjari, H.
  • Haddouche, S. Kheder
  • Balehouane, A.
  • Guerri, O.

Abstract

The Algerian government has established an attractive policy to encourage investment in the wind energy by installing 5 GW of wind power by 2030. It has focused on collaborations and calls for investment from outside wind energy companies. However, this energy sector development requires the identification of potentially windy sites. This study was performed in order to determine new optimal sites in Algeria that may be eligible to receive the wind farm projects. Therefore, data from about 74 new sites were identified and assimilated to verify and update the wind resource estimates. Hourly wind speeds data were used for the establishment of the annual and seasonal wind maps at 10 m and 80 m a.g.l. As the wind map updates highlighted important changes in the wind resource, the wind potential sensitivity to the data time period was evaluated. The windy sites were classed on the basis of the NREL international standards. However, In order to ensure an adequate return on investment, the other objective of this study was to identify the optimal sites using a multi-criteria analysis based on the GIS method. Considering additional factors as network availability and wind energy previsions, different strategic scenarios of wind farms planning were proposed.

Suggested Citation

  • Daaou Nedjari, H. & Haddouche, S. Kheder & Balehouane, A. & Guerri, O., 2018. "Optimal windy sites in Algeria: Potential and perspectives," Energy, Elsevier, vol. 147(C), pages 1240-1255.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1240-1255
    DOI: 10.1016/j.energy.2017.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    2. van Haaren, Rob & Fthenakis, Vasilis, 2011. "GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3332-3340, September.
    3. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    4. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    5. Abed, K.A. & El-Mallah, A.A., 1997. "Capacity factor of wind turbines," Energy, Elsevier, vol. 22(5), pages 487-491.
    6. Makhloufi, Saida & Mekhaldi, Abdelouahab & Teguar, Madjid, 2016. "Three powerful nature-inspired algorithms to optimize power flow in Algeria's Adrar power system," Energy, Elsevier, vol. 116(P1), pages 1117-1130.
    7. Abdeladim, K. & Romeo, R. & Magrì, S., 1996. "Wind mapping of a region in the north-east of Algeria," Renewable Energy, Elsevier, vol. 9(1), pages 789-793.
    8. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    9. Voivontas, D. & Assimacopoulos, D. & Mourelatos, A. & Corominas, J., 1998. "Evaluation of Renewable Energy potential using a GIS decision support system," Renewable Energy, Elsevier, vol. 13(3), pages 333-344.
    10. Chellali, Farouk & Khellaf, Adballah & Belouchrani, Adel & Recioui, Abdelmadjid, 2011. "A contribution in the actualization of wind map of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 993-1002, February.
    11. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    12. Milanese, Marco & Tornese, Ljuba & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Numerical method for wind energy analysis applied to Apulia Region, Italy," Energy, Elsevier, vol. 128(C), pages 1-10.
    13. Merzouk, N.Kasbadji, 2000. "Wind energy potential of Algeria," Renewable Energy, Elsevier, vol. 21(3), pages 553-562.
    14. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    15. Stambouli, A. Boudghene & Khiat, Z. & Flazi, S. & Kitamura, Y., 2012. "A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4445-4460.
    16. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    17. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    18. Abdeslame, Djamila & Kasbadji Merzouk, Nachida & Mekhtoub, Said & Abbas, Mohamed & Dehmas, Mokrane, 2017. "Estimation of power generation capacities of a wind farms installed in windy sites in Algerian high plateaus," Renewable Energy, Elsevier, vol. 103(C), pages 630-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jánosi, Imre M. & Medjdoub, Karim & Vincze, Miklós, 2021. "Combined wind-solar electricity production potential over north-western Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Makhloufi, Saida & Khennas, Smail & Bouchaib, Sami & Arab, Amar Hadj, 2022. "Multi-objective cuckoo search algorithm for optimized pathways for 75 % renewable electricity mix by 2050 in Algeria," Renewable Energy, Elsevier, vol. 185(C), pages 1410-1424.
    3. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    4. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Younes Zahraoui & Mohammed Reyasudin Basir Khan & Ibrahim AlHamrouni & Saad Mekhilef & Mahrous Ahmed, 2021. "Current Status, Scenario, and Prospective of Renewable Energy in Algeria: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    6. Roummani, Khayra & Hamouda, Messaoud & Mazari, Benyounes & Bendjebbar, Mokhtar & Koussa, Khaled & Ferroudji, Fateh & Necaibia, Ammar, 2019. "A new concept in direct-driven vertical axis wind energy conversion system under real wind speed with robust stator power control," Renewable Energy, Elsevier, vol. 143(C), pages 478-487.
    7. Jung, Christopher & Schindler, Dirk, 2023. "Introducing a new wind speed complementarity model," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. saheb Koussa, Djohra & Koussa, Mustapha, 2016. "GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria," Energy, Elsevier, vol. 102(C), pages 216-230.
    2. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    3. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    4. Farrell, Niall & Devine, Mel, 2015. "How do External Costs affect Pay-as-bid Renewable Energy Connection Auctions?," Papers WP517, Economic and Social Research Institute (ESRI).
    5. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    6. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    7. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
    8. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    9. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
    10. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    11. Tsoutsos, T. & Tsitoura, I. & Kokologos, D. & Kalaitzakis, K., 2015. "Sustainable siting process in large wind farms case study in Crete," Renewable Energy, Elsevier, vol. 75(C), pages 474-480.
    12. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    13. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    14. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    15. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    16. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    17. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    18. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    19. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    20. Chellali, Farouk & Khellaf, Adballah & Belouchrani, Adel & Recioui, Abdelmadjid, 2011. "A contribution in the actualization of wind map of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 993-1002, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1240-1255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.