IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v131y2017icp149-164.html
   My bibliography  Save this article

Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models

Author

Listed:
  • Jamil, Basharat
  • Akhtar, Naiem

Abstract

In this study, measured data of solar radiation were utilized to develop sixteen empirical models for estimation of monthly mean diffuse solar radiation with single input predictor as clearness index. Global and diffuse solar radiations were measured for three complete years in ‘Humid subtropical climatic region’ of India. Equipment consisting of secondary standard pyranometers and continuous datalogging facility were used to observe solar radiation at ground level in the city of Aligarh (27.89°N, 78.08°E). Two categories of models were defined (i.e. diffuse fraction and diffusion coefficient) with eight models under each category. Total solar radiation dataset was divided into two parts where ‘Training dataset’ was used to develop the models while the ‘Validation dataset’ was used to test the models. Accuracy of models was analyzed in terms of some commonly used statistical indicators. Developed models were also compared with well-established models from literature. Models were arranged in order of suitability of estimation using Global Performance Indicator within the respective category as well as among the overall group of developed models. Reasonable agreement was found between estimated values from the developed models and measured data. Developed models can conveniently be utilized to evaluate diffuse solar radiation in the region considered.

Suggested Citation

  • Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
  • Handle: RePEc:eee:energy:v:131:y:2017:i:c:p:149-164
    DOI: 10.1016/j.energy.2017.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapoor, Karan & Pandey, Krishan K. & Jain, A.K. & Nandan, Ashish, 2014. "Evolution of solar energy in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 475-487.
    2. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    3. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    4. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    5. Parishwad, G.V. & Bhardwaj, R.K. & Nema, V.K., 1997. "Estimation of hourly solar radiation for India," Renewable Energy, Elsevier, vol. 12(3), pages 303-313.
    6. Al-Mohamad, Ali, 2004. "Global, direct and diffuse solar-radiation in Syria," Applied Energy, Elsevier, vol. 79(2), pages 191-200, October.
    7. Jiang, Yingni, 2009. "Estimation of monthly mean daily diffuse radiation in China," Applied Energy, Elsevier, vol. 86(9), pages 1458-1464, September.
    8. Li, Huashan & Bu, Xianbiao & Lian, Yongwang & Zhao, Liang & Ma, Weibin, 2012. "Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China," Renewable Energy, Elsevier, vol. 44(C), pages 469-473.
    9. Veeran, P.K. & Kumar, S., 1993. "Diffuse radiation on a horizontal surfaces at Madras," Renewable Energy, Elsevier, vol. 3(8), pages 931-934.
    10. Boland, John & Huang, Jing & Ridley, Barbara, 2013. "Decomposing global solar radiation into its direct and diffuse components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 749-756.
    11. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    12. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    13. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.
    14. Rehman, Shafiqur & Mohandes, Mohamed, 2008. "Artificial neural network estimation of global solar radiation using air temperature and relative humidity," Energy Policy, Elsevier, vol. 36(2), pages 571-576, February.
    15. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    16. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    17. Rehman, Shafiqur, 1998. "Solar radiation over Saudi Arabia and comparisons with empirical models," Energy, Elsevier, vol. 23(12), pages 1077-1082.
    18. Oliveira, Amauri P. & Escobedo, João F. & Machado, Antonio J. & Soares, Jacyra, 2002. "Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil," Applied Energy, Elsevier, vol. 71(1), pages 59-73, January.
    19. Karakoti, Indira & Pande, Bimal & Pandey, Kavita, 2011. "Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2378-2384, June.
    20. Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
    21. Pandey, Shreemat & Singh, Vijai Shanker & Gangwar, Naresh Pal & Vijayvergia, M.M. & Prakash, Chandra & Pandey, Deep Narayan, 2012. "Determinants of success for promoting solar energy in Rajasthan, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3593-3598.
    22. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    23. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    24. Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A comparative study to estimate daily diffuse solar radiation over India," Energy, Elsevier, vol. 34(11), pages 1792-1796.
    25. Wattan, Rungrat & Janjai, Serm, 2016. "An investigation of the performance of 14 models for estimating hourly diffuse irradiation on inclined surfaces at tropical sites," Renewable Energy, Elsevier, vol. 93(C), pages 667-674.
    26. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    27. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    28. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    29. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
    30. Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
    31. Rehman, Shafiqur & Ghori, Saleem G, 2000. "Spatial estimation of global solar radiation using geostatistics," Renewable Energy, Elsevier, vol. 21(3), pages 583-605.
    32. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    2. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    3. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    4. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    5. Mosavi, Amir & Faghan, Yaser & Ghamisi, Pedram & Duan, Puhong & Ardabili, Sina Faizollahzadeh & Hassan, Salwana & Band, Shahab S., 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," OSF Preprints jrc58, Center for Open Science.
    6. Husain, Shahid & Adil, Md & Arqam, Mohammad & Shabani, Bahman, 2021. "A review on the thermal performance of natural convection in vertical annulus and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Bailek, Nadjem & Bouchouicha, Kada & Hassan, Muhammed A. & Slimani, Abdeldjalil & Jamil, Basharat, 2020. "Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria," Renewable Energy, Elsevier, vol. 156(C), pages 57-67.
    8. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    9. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    2. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    3. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    4. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    5. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    6. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    7. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    8. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    9. Karakoti, Indira & Das, Prasun Kumar & Singh, S.K., 2012. "Predicting monthly mean daily diffuse radiation for India," Applied Energy, Elsevier, vol. 91(1), pages 412-425.
    10. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Wang, Xiukang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 732-747.
    11. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    12. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    13. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    14. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    15. Božnar, Marija Zlata & Grašič, Boštjan & Oliveira, Amauri Pereira de & Soares, Jacyra & Mlakar, Primož, 2017. "Spatially transferable regional model for half-hourly values of diffuse solar radiation for general sky conditions based on perceptron artificial neural networks," Renewable Energy, Elsevier, vol. 103(C), pages 794-810.
    16. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    17. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    18. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    19. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
    20. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:131:y:2017:i:c:p:149-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.