IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp144-158.html
   My bibliography  Save this article

Evaluation of low-pressure flooded evaporator performance for adsorption chillers

Author

Listed:
  • Thimmaiah, Poovanna Cheppudira
  • Sharafian, Amir
  • Rouhani, Mina
  • Huttema, Wendell
  • Bahrami, Majid

Abstract

In an adsorption chiller, the refrigerant (water) operating pressure is low (0.5–5 kPa) and the cooling power generation of a flooded evaporator is affected by the height of water column. To resolve this issue, we experimentally investigate the performance of a flooded evaporator as a function of water height. The results show an optimum water height equal to 80% of the tube diameter leading to achieve the highest cooling power. Under this condition, the internal and external thermal resistances on the inside and outside of the evaporator tubes account for up to 73% of the overall thermal resistance. To reduce the internal thermal resistance, twisted and Z-type turbulent flow generators are incorporated into the evaporator tubes. The evaporator cooling power shows an increase by 12% and 58% when twisted tape and Z-type turbulators are used at a cost of an increase in the internal pressure drop by 2.5 and 14.5 times, respectively. The twisted tape and Z-type turbulators improve the average specific cooling power of the adsorption chiller by 9% and 47%, respectively. To reduce the external thermal resistance, the outside surface of the evaporator tubes is coated with porous copper. The coated evaporator increases the overall heat transfer coefficient by 1.4 times and improves the specific cooling power of the adsorption chiller by 48% compared to the uncoated tubes.

Suggested Citation

  • Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:144-158
    DOI: 10.1016/j.energy.2017.01.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    2. Sabir, H. M. & Bwalya, A. C., 2002. "Experimental study of capillary-assisted water evaporators for vapour-absorption systems," Applied Energy, Elsevier, vol. 71(1), pages 45-57, January.
    3. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    4. Jiangzhou, S & Wang, R.Z & Lu, Y.Z & Xu, Y.X & Wu, J.Y & Li, Z.H, 2003. "Locomotive driver cabin adsorption air-conditioner," Renewable Energy, Elsevier, vol. 28(11), pages 1659-1670.
    5. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    6. Cheppudira Thimmaiah, Poovanna & Sharafian, Amir & Huttema, Wendell & McCague, Claire & Bahrami, Majid, 2016. "Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications," Applied Energy, Elsevier, vol. 171(C), pages 256-265.
    7. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    8. Wang, R.Z. & Xia, Z.Z. & Wang, L.W. & Lu, Z.S. & Li, S.L. & Li, T.X. & Wu, J.Y. & He, S., 2011. "Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy," Energy, Elsevier, vol. 36(9), pages 5425-5439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Toppi & Tommaso Villa & Salvatore Vasta & Walter Mittelbach & Angelo Freni, 2022. "Testing of a Falling-Film Evaporator for Adsorption Chillers," Energies, MDPI, vol. 15(5), pages 1-14, February.
    2. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    3. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    4. Abadi, G. Bamorovat & Bahrami, Majid, 2020. "Combined evaporator and condenser for sorption cooling systems: A steady-state performance analysis," Energy, Elsevier, vol. 209(C).
    5. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    6. He, Fang & Nagano, Katsunori & Togawa, Junya, 2020. "Experimental study and development of a low-cost 1 kW adsorption chiller using composite adsorbent based on natural mesoporous material," Energy, Elsevier, vol. 209(C).
    7. Karol Sztekler & Tomasz Siwek & Wojciech Kalawa & Lukasz Lis & Lukasz Mika & Ewelina Radomska & Wojciech Nowak, 2021. "CFD Analysis of Elements of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(22), pages 1-19, November.
    8. He, Fang & Nagano, Katsunori & Seol, Sung-Hoon & Togawa, Junya, 2022. "Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    2. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    3. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    4. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    5. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    6. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    7. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    9. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    10. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    11. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    12. Abadi, G. Bamorovat & Bahrami, Majid, 2020. "Combined evaporator and condenser for sorption cooling systems: A steady-state performance analysis," Energy, Elsevier, vol. 209(C).
    13. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Marcin Sosnowski, 2019. "Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology," Energies, MDPI, vol. 12(24), pages 1-19, December.
    15. He, Fang & Nagano, Katsunori & Seol, Sung-Hoon & Togawa, Junya, 2022. "Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery," Energy, Elsevier, vol. 239(PE).
    16. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Cheppudira Thimmaiah, Poovanna & Sharafian, Amir & Huttema, Wendell & McCague, Claire & Bahrami, Majid, 2016. "Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling system applications," Applied Energy, Elsevier, vol. 171(C), pages 256-265.
    18. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    19. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    20. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:144-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.