IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp288-298.html
   My bibliography  Save this article

Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach

Author

Listed:
  • Monjoly, Stéphanie
  • André, Maïna
  • Calif, Rudy
  • Soubdhan, Ted

Abstract

This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index Kc data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model.

Suggested Citation

  • Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:288-298
    DOI: 10.1016/j.energy.2016.11.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216316668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
    2. Dambreville, Romain & Blanc, Philippe & Chanussot, Jocelyn & Boldo, Didier, 2014. "Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model," Renewable Energy, Elsevier, vol. 72(C), pages 291-300.
    3. B. Lashermes & S. G. Roux & P. Abry & S. Jaffard, 2008. "Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 201-215, January.
    4. Cao, J.C. & Cao, S.H., 2006. "Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis," Energy, Elsevier, vol. 31(15), pages 3435-3445.
    5. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    6. Honglu Zhu & Xu Li & Qiao Sun & Ling Nie & Jianxi Yao & Gang Zhao, 2015. "A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks," Energies, MDPI, vol. 9(1), pages 1-15, December.
    7. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2013. "Hybrid methodology for hourly global radiation forecasting in Mediterranean area," Renewable Energy, Elsevier, vol. 53(C), pages 1-11.
    8. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    3. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    5. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    6. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    7. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Singularity power spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 63-73.
    8. Xiong, Gang & Zhang, Shuning & Yang, Xiaoniu, 2012. "The fractal energy measurement and the singularity energy spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6347-6361.
    9. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    10. Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
    11. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
    12. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    13. Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
    14. Severiano, Carlos A. & Silva, Petrônio Cândido de Lima e & Weiss Cohen, Miri & Guimarães, Frederico Gadelha, 2021. "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, Elsevier, vol. 171(C), pages 764-783.
    15. André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
    16. Calif, Rudy & Schmitt, François G. & Huang, Yongxiang, 2013. "Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4106-4120.
    17. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    18. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    19. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    20. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:288-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.