IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp796-808.html
   My bibliography  Save this article

An incremental electric load forecasting model based on support vector regression

Author

Listed:
  • Yang, YouLong
  • Che, JinXing
  • Li, YanYing
  • Zhao, YanJun
  • Zhu, SuLing

Abstract

With the smart portable systems and the daily growth of databases on the web, there are ever-increasing requirements to learn the batch arriving and large sample data set. In this paper, an incremental learning model of support vector regression (SVR) is proposed to forecast the electric load under the batch arriving and large sample. For modeling with SVR, the optimal embedding of time series is constructed by phase space reconstruction (PSR). Then, an optimal training subset for the training of SVR is extracted based on the current data set, which enables us to cut the high time and space complexity by reducing the full training data set. When newly-increased data are added into the system, a representative data set reconstruction method is presented for quickly re-training the current SVR, and a nested particle swarm optimization (NPSO) framework is presented to select the parameters of the incremental SVR model. Experiments of incremental electric load forecasting demonstrate the computational superiority of the presented model over the comparison models.

Suggested Citation

  • Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:796-808
    DOI: 10.1016/j.energy.2016.07.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    2. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    3. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    4. Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2014. "Uncertainty handling using neural network-based prediction intervals for electrical load forecasting," Energy, Elsevier, vol. 73(C), pages 916-925.
    5. Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
    6. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    7. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
    8. Bahrami, Saadat & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2014. "Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm," Energy, Elsevier, vol. 72(C), pages 434-442.
    9. Chia, Yen Yee & Lee, Lam Hong & Shafiabady, Niusha & Isa, Dino, 2015. "A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine," Applied Energy, Elsevier, vol. 137(C), pages 588-602.
    10. Huang, Chien-Ming & Lee, Yuh-Jye & Lin, Dennis K.J. & Huang, Su-Yun, 2007. "Model selection for support vector machines via uniform design," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 335-346, September.
    11. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    12. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    2. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    4. Yuan, Yue & Chen, Zhihua & Wang, Zhe & Sun, Yifu & Chen, Yixing, 2023. "Attention mechanism-based transfer learning model for day-ahead energy demand forecasting of shopping mall buildings," Energy, Elsevier, vol. 270(C).
    5. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    6. Prado, Francisco & Minutolo, Marcel C. & Kristjanpoller, Werner, 2020. "Forecasting based on an ensemble Autoregressive Moving Average - Adaptive neuro - Fuzzy inference system – Neural network - Genetic Algorithm Framework," Energy, Elsevier, vol. 197(C).
    7. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    8. Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
    9. Wu, Jinran & Cui, Zhesen & Chen, Yanyan & Kong, Demeng & Wang, You-Gan, 2019. "A new hybrid model to predict the electrical load in five states of Australia," Energy, Elsevier, vol. 166(C), pages 598-609.
    10. Samer Chaaraoui & Matthias Bebber & Stefanie Meilinger & Silvan Rummeny & Thorsten Schneiders & Windmanagda Sawadogo & Harald Kunstmann, 2021. "Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms," Energies, MDPI, vol. 14(2), pages 1-22, January.
    11. Xie, Guangrui & Chen, Xi & Weng, Yang, 2020. "Input modeling and uncertainty quantification for improving volatile residential load forecasting," Energy, Elsevier, vol. 211(C).
    12. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    13. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    14. Li, Yanying & Che, Jinxing & Yang, Youlong, 2018. "Subsampled support vector regression ensemble for short term electric load forecasting," Energy, Elsevier, vol. 164(C), pages 160-170.
    15. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    16. E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
    17. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    18. Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.
    19. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    20. Wu, Jinran & Wang, You-Gan & Tian, Yu-Chu & Burrage, Kevin & Cao, Taoyun, 2021. "Support vector regression with asymmetric loss for optimal electric load forecasting," Energy, Elsevier, vol. 223(C).
    21. Moral-Carcedo, Julián & Pérez-García, Julián, 2017. "Integrating long-term economic scenarios into peak load forecasting: An application to Spain," Energy, Elsevier, vol. 140(P1), pages 682-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    2. He, Yaoyao & Xu, Qifa & Wan, Jinhong & Yang, Shanlin, 2016. "Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function," Energy, Elsevier, vol. 114(C), pages 498-512.
    3. Tongxiang Liu & Yu Jin & Yuyang Gao, 2019. "A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization," Energies, MDPI, vol. 12(8), pages 1-20, April.
    4. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    5. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    6. He, Yaoyao & Zheng, Yaya, 2018. "Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function," Energy, Elsevier, vol. 154(C), pages 143-156.
    7. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    8. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    9. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    10. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    11. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    12. Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
    13. Xiao, Liye & Shao, Wei & Wang, Chen & Zhang, Kequan & Lu, Haiyan, 2016. "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting," Applied Energy, Elsevier, vol. 180(C), pages 213-233.
    14. Yongquan Dong & Zichen Zhang & Wei-Chiang Hong, 2018. "A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-21, April.
    15. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    16. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    17. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    18. Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
    19. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    20. Ghasemi, A. & Shayeghi, H. & Moradzadeh, M. & Nooshyar, M., 2016. "A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management," Applied Energy, Elsevier, vol. 177(C), pages 40-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:796-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.