IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp378-390.html
   My bibliography  Save this article

Peak-power control of a grid-integrated oscillating water column wave energy converter

Author

Listed:
  • Henriques, J.C.C.
  • Gato, L.M.C.
  • Lemos, J.M.
  • Gomes, R.P.F.
  • Falcão, A.F.O.

Abstract

A critical characteristic of most WECs (wave energy converters) is the large peak-to-average power ratio. This poses many challenges to the design of high-efficient PTO (power take-off) systems and, even more importantly, to integrate this form of renewable energy into power grids. The OWC (oscillating water column) WECs are devices whose PTO uses an air turbine as the primary energy converter. Besides its inherent simplicity, probably the greatest advantage of OWC based WECs is the ability to control or dissipate any excess of energy available to the PTO system that may occur in medium to highly energetic sea states. The contribution of the paper is the performance assessment of a new control algorithm to operate a HSSV (high-speed stop valve) installed in series with the turbine. The goal is to perform close-to-optimal latching control of the WEC and, simultaneously, operate the HSSV to limit the energy available to the turbine/generator set. The proposed control algorithm shows large improvements in the extracted mean power while limiting the peak-to-average power ratio, thus improving the power quality delivered to the electrical grid. Tests performed in a large-scale PTO test rig validated the algorithm.

Suggested Citation

  • Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:378-390
    DOI: 10.1016/j.energy.2016.04.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Umbach, Frank, 2010. "Global energy security and the implications for the EU," Energy Policy, Elsevier, vol. 38(3), pages 1229-1240, March.
    2. Henriques, J.C.C. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Ceballos, S., 2016. "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 714-724.
    3. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    4. Lund, Henrik, 2006. "The Kyoto mechanisms and technological innovation," Energy, Elsevier, vol. 31(13), pages 2325-2332.
    5. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing," Renewable Energy, Elsevier, vol. 53(C), pages 159-164.
    6. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    7. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion," Renewable Energy, Elsevier, vol. 44(C), pages 328-339.
    8. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    9. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    10. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    11. Mitchell Ferguson, Tom & Fleming, Alan & Penesis, Irene & Macfarlane, Gregor, 2015. "Improving OWC performance prediction using polychromatic waves," Energy, Elsevier, vol. 93(P2), pages 1943-1952.
    12. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    13. Lund, Henrik & Østergaard, Poul Alberg & Stadler, Ingo, 2011. "Towards 100% renewable energy systems," Applied Energy, Elsevier, vol. 88(2), pages 419-421, February.
    14. da Graça Carvalho, Maria, 2012. "EU energy and climate change strategy," Energy, Elsevier, vol. 40(1), pages 19-22.
    15. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    16. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    17. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    2. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    3. Jinming Wu & Yingxue Yao & Liang Zhou & Malin Göteman, 2017. "Latching and Declutching Control of the Solo Duck Wave-Energy Converter with Different Load Types," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    5. Hayrettin Bora Karayaka & Yi-Hsiang Yu & Eduard Muljadi, 2021. "Investigations into Balancing Peak-to-Average Power Ratio and Mean Power Extraction for a Two-Body Point-Absorber Wave Energy Converter," Energies, MDPI, vol. 14(12), pages 1-24, June.
    6. Suchithra, R. & Ezhilsabareesh, K. & Samad, Abdus, 2019. "Optimization based higher order sliding mode controller for efficiency improvement of a wave energy converter," Energy, Elsevier, vol. 187(C).
    7. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Göteman, Malin, 2018. "Real-time latching control strategies for the solo Duck wave energy converter in irregular waves," Applied Energy, Elsevier, vol. 222(C), pages 717-728.
    8. Falcão, A.F.O. & Henriques, J.C.C. & Gato, L.M.C., 2017. "Rotational speed control and electrical rated power of an oscillating-water-column wave energy converter," Energy, Elsevier, vol. 120(C), pages 253-261.
    9. Faÿ, François-Xavier & Robles, Eider & Marcos, Marga & Aldaiturriaga, Endika & Camacho, Eduardo F., 2020. "Sea trial results of a predictive algorithm at the Mutriku Wave power plant and controllers assessment based on a detailed plant model," Renewable Energy, Elsevier, vol. 146(C), pages 1725-1745.
    10. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    11. Das, Tapas K. & Samad, Abdus, 2020. "Influence of stall fences on the performance of Wells turbine," Energy, Elsevier, vol. 194(C).
    12. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    13. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    14. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    15. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    16. Sunil Kumar Mishra & Amitkumar V. Jha & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong & Pongsiri Mungporn, 2023. "Ocean Wave Energy Control Using Aquila Optimization Technique," Energies, MDPI, vol. 16(11), pages 1-21, June.
    17. Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
    18. Ramos, V. & López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the wave climate seasonality on the performance of a wave energy converter: A case study," Energy, Elsevier, vol. 135(C), pages 303-316.
    19. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    20. Henriques, J.C.C. & Portillo, J.C.C. & Sheng, W. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 571-589.
    21. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    2. Henriques, J.C.C. & Portillo, J.C.C. & Sheng, W. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 571-589.
    3. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    4. Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.
    5. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    6. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    7. Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
    8. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    9. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    10. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    11. Portillo, J.C.C. & Collins, K.M. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Howey, B.D. & Hann, M.R. & Greaves, D.M. & Falcão, A.F.O., 2020. "Wave energy converter physical model design and testing: The case of floating oscillating-water-columns," Applied Energy, Elsevier, vol. 278(C).
    12. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    13. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    15. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
    16. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    17. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    18. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    19. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    20. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:378-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.