IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp559-566.html
   My bibliography  Save this article

Development and validation of a wide-area model of hourly aggregate solar power generation

Author

Listed:
  • Lingfors, D.
  • Widén, J.

Abstract

The impact of PV (photovoltaics) on the power system becomes increasingly important to study as the penetration of PV has increased rapidly over the last decade. A physical model for aggregated PV generation has been developed for the Swedish spot market areas. Information about PV systems within the Swedish electricity certificate system and irradiance data from the meteorological model STRÅNG were used as inputs. The model was trained and validated against production data reported to the Swedish transmission system operator. Our model shows high correlation (0.95–0.99) to reported historical production data. However, it overestimates maximum 1 h ramp rates, which are −20% and 22% for down- and up-ramps respectively, compared to −13% and 14% for the reported data. Furthermore a weighting function was developed, which takes demography, available solar irradiance and today's PV deployment into account, to model likely deployment in a Swedish high penetration scenario, where PV covers 6% of the total annual power demand. The difference in large 1 and 4 h step changes before and after introducing PV is small. The model could thus be used with confidence to model the impact on the power system for future scenarios of high PV penetration.

Suggested Citation

  • Lingfors, D. & Widén, J., 2016. "Development and validation of a wide-area model of hourly aggregate solar power generation," Energy, Elsevier, vol. 102(C), pages 559-566.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:559-566
    DOI: 10.1016/j.energy.2016.02.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andresen, Gorm B. & Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2014. "The potential for arbitrage of wind and solar surplus power in Denmark," Energy, Elsevier, vol. 76(C), pages 49-58.
    2. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    4. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    5. Raphael Debets, 2008. "Performance Budgeting in the Netherlands," OECD Journal on Budgeting, OECD Publishing, vol. 7(4), pages 1-20.
    6. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    7. Luca Petricca & Per Ohlckers & Xuyuan Chen, 2013. "The Future of Energy Storage Systems," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    8. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    9. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    10. So, Jung Hun & Jung, Young Seok & Yu, Gwon Jong & Choi, Ju Yeop & Choi, Jae Ho, 2007. "Performance results and analysis of 3kW grid-connected PV systems," Renewable Energy, Elsevier, vol. 32(11), pages 1858-1872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuño, Edgar & Maule, Petr & Hahmann, Andrea & Cutululis, Nicolaos & Sørensen, Poul & Karagali, Ioanna, 2018. "Simulation of transcontinental wind and solar PV generation time series," Renewable Energy, Elsevier, vol. 118(C), pages 425-436.
    2. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    3. Åberg, Magnus & Lingfors, David & Olauson, Jon & Widén, Joakim, 2019. "Can electricity market prices control power-to-heat production for peak shaving of renewable power generation? The case of Sweden," Energy, Elsevier, vol. 176(C), pages 1-14.
    4. Lindahl, Johan & Lingfors, David & Elmqvist, Åsa & Mignon, Ingrid, 2022. "Economic analysis of the early market of centralized photovoltaic parks in Sweden," Renewable Energy, Elsevier, vol. 185(C), pages 1192-1208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
    2. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    5. Jacobson, Mark Z. & Delucchi, Mark A. & Bazouin, Guillaume & Dvorak, Michael J. & Arghandeh, Reza & Bauer, Zack A.F. & Cotte, Ariane & de Moor, Gerrit M.T.H. & Goldner, Elissa G. & Heier, Casey & Holm, 2016. "A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State," Renewable Energy, Elsevier, vol. 86(C), pages 75-88.
    6. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    7. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    8. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    9. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    10. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
    11. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    12. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    13. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    14. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    15. Kengo Suzuki & Ryohei Ishiwata, 2022. "Impact of a Carbon Tax on Energy Transition in a Deregulated Market: A Game-Based Experimental Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    16. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    17. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    18. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight," Energy Policy, Elsevier, vol. 62(C), pages 1212-1215.
    19. Turner, Graham M. & Elliston, Ben & Diesendorf, Mark, 2013. "Impacts on the biophysical economy and environment of a transition to 100% renewable electricity in Australia," Energy Policy, Elsevier, vol. 54(C), pages 288-299.
    20. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight," Energy Policy, Elsevier, vol. 57(C), pages 585-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:559-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.