IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v98y2016icp274-289.html
   My bibliography  Save this article

Baseline of the projection under a structural change in energy demand

Author

Listed:
  • Sakamoto, Tomoyuki
  • Takase, Kae
  • Matsuhashi, Ryuji
  • Managi, Shunsuke

Abstract

This article investigates the long-term energy demand and energy policy measures when undergoing structural changes in energy demand. Initially, the statistical test shows the possibility of the structural change from the late 2000s. Therefore, we developed the energy demand model to forecast the energy demand by 2030 that considers the structural change. The results show that there may be a 12% reduction in the energy demand in 2030 compared to the reference case in the Japanese government's outlook, which is equal to about 86.0% of the effect of the planned policy measures by the government, but also that it is difficult to achieve energy-originated CO2 emissions in the national target. Our analysis suggests that mitigation policies are required, but those in the planned policy measures are not completely required to achieve the goal.

Suggested Citation

  • Sakamoto, Tomoyuki & Takase, Kae & Matsuhashi, Ryuji & Managi, Shunsuke, 2016. "Baseline of the projection under a structural change in energy demand," Energy Policy, Elsevier, vol. 98(C), pages 274-289.
  • Handle: RePEc:eee:enepol:v:98:y:2016:i:c:p:274-289
    DOI: 10.1016/j.enpol.2016.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516304608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallardo, Adrián H. & Matsuzaki, Tomose & Aoki, Hisashi, 2014. "Geological storage of nuclear wastes: Insights following the Fukushima crisis," Energy Policy, Elsevier, vol. 73(C), pages 391-400.
    2. Charlier, Dorothée & Risch, Anna, 2012. "Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector," Energy Policy, Elsevier, vol. 46(C), pages 170-184.
    3. Vicki Duscha & Katja Schumacher & Joachim Schleich & Pierre Buisson, 2014. "Costs of meeting international climate targets without nuclear power," Climate Policy, Taylor & Francis Journals, vol. 14(3), pages 327-352, May.
    4. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    5. Wyatt, Peter, 2013. "A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England," Energy Policy, Elsevier, vol. 60(C), pages 540-549.
    6. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    7. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    8. Soytas, Ugur & Sari, Ramazan, 2003. "Energy consumption and GDP: causality relationship in G-7 countries and emerging markets," Energy Economics, Elsevier, vol. 25(1), pages 33-37, January.
    9. Poortinga, Wouter & Aoyagi, Midori & Pidgeon, Nick F., 2013. "Public perceptions of climate change and energy futures before and after the Fukushima accident: A comparison between Britain and Japan," Energy Policy, Elsevier, vol. 62(C), pages 1204-1211.
    10. Yearwood Travezan, Jessica & Harmsen, Robert & van Toledo, Gideon, 2013. "Policy analysis for energy efficiency in the built environment in Spain," Energy Policy, Elsevier, vol. 61(C), pages 317-326.
    11. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    12. Roelfsema, Mark & Elzen, Michel den & Höhne, Niklas & Hof, Andries F. & Braun, Nadine & Fekete, Hanna & Böttcher, Hannes & Brandsma, Ruut & Larkin, Julia, 2014. "Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies," Energy Policy, Elsevier, vol. 67(C), pages 781-796.
    13. Thollander, Patrik & Rohdin, Patrik & Moshfegh, Bahram, 2012. "On the formation of energy policies towards 2020: Challenges in the Swedish industrial and building sectors," Energy Policy, Elsevier, vol. 42(C), pages 461-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    2. Rosaura Castrillón-Mendoza & Javier M. Rey-Hernández & Francisco J. Rey-Martínez, 2020. "Industrial Decarbonization by a New Energy-Baseline Methodology. Case Study," Sustainability, MDPI, vol. 12(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    2. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    3. Wang, Xia & Ding, Chao & Cai, Weiguang & Luo, Lizi & Chen, Mingman, 2021. "Identifying household cooling savings potential in the hot summer and cold winter climate zone in China: A stochastic demand frontier approach," Energy, Elsevier, vol. 237(C).
    4. Schmidt, Stephan & Weigt, Hannes, 2013. "A Review on Energy Consumption from a Socio-Economic Perspective: Reduction through Energy Efficiency and Beyond," Working papers 2013/15, Faculty of Business and Economics - University of Basel.
    5. Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
    6. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    7. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    8. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    9. Leila Luttenberger Marić & Hrvoje Keko & Marko Delimar, 2022. "The Role of Local Aggregator in Delivering Energy Savings to Household Consumers," Energies, MDPI, vol. 15(8), pages 1-27, April.
    10. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    11. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
    12. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    13. Wallis, Hannah & Nachreiner, Malte & Matthies, Ellen, 2016. "Adolescents and electricity consumption; Investigating sociodemographic, economic, and behavioural influences on electricity consumption in households," Energy Policy, Elsevier, vol. 94(C), pages 224-234.
    14. Ku, Arthur Lin & Qiu, Yueming (Lucy) & Lou, Jiehong & Nock, Destenie & Xing, Bo, 2022. "Changes in hourly electricity consumption under COVID mandates: A glance to future hourly residential power consumption pattern with remote work in Arizona," Applied Energy, Elsevier, vol. 310(C).
    15. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    16. Dimitra Kotsila & Persefoni Polychronidou, 2021. "Determinants of household electricity consumption in Greece: a statistical analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-20, December.
    17. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    18. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    19. Yilmaz, S. & Weber, S. & Patel, M.K., 2019. "Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes," Energy Policy, Elsevier, vol. 133(C).
    20. Hoai-Son Nguyen & Minh Ha-Duong, 2017. "Family size, Increasing block tariff and Economies of scale of household electricity consumption in Vietnam from 2010 to 2014," Post-Print hal-01714899, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:98:y:2016:i:c:p:274-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.