IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v96y2016icp302-313.html
   My bibliography  Save this article

A framework for siting and dispatch of emerging energy resources to realize environmental and health benefits: Case study on peaker power plant displacement

Author

Listed:
  • Krieger, Elena M.
  • Casey, Joan A.
  • Shonkoff, Seth B.C.

Abstract

Emerging grid resources such as energy storage and demand response have the potential to provide numerous environmental and societal benefits, but are primarily sited and operated to provide grid-specific services without optimizing these co-benefits. We present a four-metric framework to identify priority regions to deploy and dispatch these technologies to displace marginal grid air emissions with high environmental and health impacts. To the standard metrics of total mass and rate of air pollutant emissions we add location and time, to prioritize emission displacement near densely populated areas with poor air quality, especially at times when air pollutant concentrations exceed regulatory standards. We illustrate our framework with a case study using storage, demand response, and other technologies to displace peaker power plants, the highest-rate marginal emitters on the California grid. We combine spatial-temporal data on plant electricity generation, air quality standard exceedance days, and population characteristics available from environmental justice screening tool CalEnviroScreen 2.0 to determine where emissions reductions may have the greatest marginal benefit. This screening approach can inform grid siting decisions, such as storage in lieu of peaker plants in high impact regions, or dispatch protocol, such as triggering demand response instead of peaker plants on poor air quality days.

Suggested Citation

  • Krieger, Elena M. & Casey, Joan A. & Shonkoff, Seth B.C., 2016. "A framework for siting and dispatch of emerging energy resources to realize environmental and health benefits: Case study on peaker power plant displacement," Energy Policy, Elsevier, vol. 96(C), pages 302-313.
  • Handle: RePEc:eee:enepol:v:96:y:2016:i:c:p:302-313
    DOI: 10.1016/j.enpol.2016.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516302798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    2. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    3. James Boyce & Manuel Pastor, 2013. "Clearing the air: incorporating air quality and environmental justice into climate policy," Climatic Change, Springer, vol. 120(4), pages 801-814, October.
    4. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    5. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    6. Tsao, C.-C. & Campbell, J.E. & Chen, Yihsu, 2011. "When renewable portfolio standards meet cap-and-trade regulations in the electricity sector: Market interactions, profits implications, and policy redundancy," Energy Policy, Elsevier, vol. 39(7), pages 3966-3974, July.
    7. Cushing, L. & Faust, J. & August, L.M. & Cendak, R. & Wieland, W. & Alexeeff, G., 2015. "Racial/ethnic disparities in cumulative environmental health impacts in California: Evidence from a statewide environmental justice screening tool (CalEnviroScreen 1.1)," American Journal of Public Health, American Public Health Association, vol. 105(11), pages 2341-2348.
    8. Muller, Nicholas Z., 2012. "The design of optimal climate policy with air pollution co-benefits," Resource and Energy Economics, Elsevier, vol. 34(4), pages 696-722.
    9. Pearre, Nathaniel S. & Swan, Lukas G., 2015. "Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies," Applied Energy, Elsevier, vol. 137(C), pages 501-510.
    10. Chen, Yihsu & Hobbs, Benjamin F. & Hugh Ellis, J. & Crowley, Christian & Joutz, Frederick, 2015. "Impacts of climate change on power sector NOx emissions: A long-run analysis of the US mid-atlantic region," Energy Policy, Elsevier, vol. 84(C), pages 11-21.
    11. Gilbraith, Nathaniel & Powers, Susan E., 2013. "Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City," Energy Policy, Elsevier, vol. 59(C), pages 459-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenn, Alan & Li, Xinwei, 2023. "Emissions and Health Impact of Electric Vehicle Adoption on Disadvantaged Communities," Institute of Transportation Studies, Working Paper Series qt5xv65775, Institute of Transportation Studies, UC Davis.
    2. Lukanov, Boris R. & Krieger, Elena M., 2019. "Distributed solar and environmental justice: Exploring the demographic and socio-economic trends of residential PV adoption in California," Energy Policy, Elsevier, vol. 134(C).
    3. Nsanzineza, Rene & O’Connell, Matthew & Brinkman, Gregory & Milford, Jana B., 2017. "Emissions implications of downscaled electricity generation scenarios for the western United States," Energy Policy, Elsevier, vol. 109(C), pages 601-608.
    4. Raoul S. Liévanos, 2018. "Retooling CalEnviroScreen: Cumulative Pollution Burden and Race-Based Environmental Health Vulnerabilities in California," IJERPH, MDPI, vol. 15(4), pages 1-26, April.
    5. Brown, David P., 2022. "Socioeconomic and demographic disparities in residential battery storage adoption: Evidence from California," Energy Policy, Elsevier, vol. 164(C).
    6. Lara J. Cushing & Shiwen Li & Benjamin B. Steiger & Joan A. Casey, 2023. "Historical red-lining is associated with fossil fuel power plant siting and present-day inequalities in air pollutant emissions," Nature Energy, Nature, vol. 8(1), pages 52-61, January.
    7. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    8. Gao, Xue & Zhou, Shan, 2022. "Solar adoption inequality in the U.S.: Trend, magnitude, and solar justice policies," Energy Policy, Elsevier, vol. 169(C).
    9. Aubree Driver & Crystal Mehdizadeh & Samuel Bara-Garcia & Coline Bodenreider & Jessica Lewis & Sacoby Wilson, 2019. "Utilization of the Maryland Environmental Justice Screening Tool: A Bladensburg, Maryland Case Study," IJERPH, MDPI, vol. 16(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    2. Bruno, Ellen M. & Jessoe, Katrina K. & Hanemann, Michael, 2023. "The Dynamic Impacts of Pricing Groundwater," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2mx8q1td, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Woo, C.K. & Olson, A. & Chen, Y. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Does California's CO2 price affect wholesale electricity prices in the Western U.S.A.?," Energy Policy, Elsevier, vol. 110(C), pages 9-19.
    4. John K. Stranlund & Insung Son, 2019. "Prices Versus Quantities Versus Hybrids in the Presence of Co-pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 353-384, June.
    5. Brunel, Claire & Johnson, Erik Paul, 2019. "Two birds, one stone? Local pollution regulation and greenhouse gas emissions," Energy Economics, Elsevier, vol. 78(C), pages 1-12.
    6. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    7. Raoul S. Liévanos, 2019. "Racialized Structural Vulnerability: Neighborhood Racial Composition, Concentrated Disadvantage, and Fine Particulate Matter in California," IJERPH, MDPI, vol. 16(17), pages 1-24, September.
    8. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    9. Crago, Christine L. & Stranlund, John K., 2015. "Optimal regulation of carbon and co-pollutants with spatially differentiated damages," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205594, Agricultural and Applied Economics Association.
    10. Papageorgiou, Asterios & Ashok, Archana & Hashemi Farzad, Tabassom & Sundberg, Cecilia, 2020. "Climate change impact of integrating a solar microgrid system into the Swedish electricity grid," Applied Energy, Elsevier, vol. 268(C).
    11. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    12. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    13. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    14. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    15. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    16. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    19. Effendi, Yuventus & Resosudarmo, Budy, 2020. "Development of Renewable Energy in ASEAN Countries: Socio-economic and Environmental Impacts," Conference papers 333229, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Wang Chang & Yun Zhu & Che-Jen Lin & Saravanan Arunachalam & Shuxiao Wang & Jia Xing & Tingting Fang & Shicheng Long & Jinying Li & Geng Chen, 2022. "Environmental Justice Assessment of Fine Particles, Ozone, and Mercury over the Pearl River Delta Region, China," Sustainability, MDPI, vol. 14(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:96:y:2016:i:c:p:302-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.