IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v50y2012icp294-305.html
   My bibliography  Save this article

Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal

Author

Listed:
  • Dowson, Mark
  • Poole, Adam
  • Harrison, David
  • Susman, Gideon

Abstract

This paper reviews the thermal performance of the existing UK housing stock, the main fabric efficiency incentive schemes and the barriers to obtaining deep energy and CO2 savings throughout the stock. The UK faces a major challenge to improve the thermal performance of its existing housing stock. Millions of dwellings possess ‘hard-to-treat’ solid walls and have glazing which is not cost effective to improve. A range of fabric efficiency incentive schemes exist, but many do not target the full range of private and social housing. From now on, the Green Deal will be the UK's key energy efficiency policy. However, the scheme is forecasted to have low consumer appeal and low incentives for investors. Moreover, calculated Green Deal loan repayments will be reliant upon estimated energy savings, yet it is claimed that retrofit measures may only be half as effective as anticipated due to a lack of monitoring, poor quality installation and the increased use of heating following refurbishment. Looking to Germany, there has been success through the Passivhaus standard, but the UK currently lacks appropriate skills and cost effective components to replicate this approach. In addition, the embodied energy in retrofit products and materials threatens to counter operational savings.

Suggested Citation

  • Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
  • Handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:294-305
    DOI: 10.1016/j.enpol.2012.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512006003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
    2. Roberts, Simon, 2008. "Altering existing buildings in the UK," Energy Policy, Elsevier, vol. 36(12), pages 4482-4486, December.
    3. Power, Anne, 2008. "Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability?," Energy Policy, Elsevier, vol. 36(12), pages 4487-4501, December.
    4. Roberts, Simon, 2008. "Effects of climate change on the built environment," Energy Policy, Elsevier, vol. 36(12), pages 4552-4557, December.
    5. Lowe, Robert & Oreszczyn, Tadj, 2008. "Regulatory standards and barriers to improved performance for housing," Energy Policy, Elsevier, vol. 36(12), pages 4475-4481, December.
    6. Ravetz, Joe, 2008. "State of the stock--What do we know about existing buildings and their future prospects?," Energy Policy, Elsevier, vol. 36(12), pages 4462-4470, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiss, Julika & Dunkelberg, Elisa & Vogelpohl, Thomas, 2012. "Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany," Energy Policy, Elsevier, vol. 44(C), pages 406-415.
    2. Kuckshinrichs, Wilhelm & Kronenberg, Tobias & Hansen, Patrick, 2010. "The social return on investment in the energy efficiency of buildings in Germany," Energy Policy, Elsevier, vol. 38(8), pages 4317-4329, August.
    3. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    4. Deakin, Mark & Campbell, Fiona & Reid, Alasdair, 2012. "The mass-retrofitting of an energy efficient-low carbon zone: Baselining the urban regeneration strategy, vision, masterplan and redevelopment scheme," Energy Policy, Elsevier, vol. 45(C), pages 187-200.
    5. Schwartz, Yair & Raslan, Rokia & Mumovic, Dejan, 2022. "Refurbish or replace? The Life Cycle Carbon Footprint and Life Cycle Cost of Refurbished and New Residential Archetype Buildings in London," Energy, Elsevier, vol. 248(C).
    6. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    7. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    8. Munarim, Ulisses & Ghisi, Enedir, 2016. "Environmental feasibility of heritage buildings rehabilitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 235-249.
    9. Killip, Gavin & Owen, Alice, 2020. "The construction industry as agents of energy demand configuration in the existing housing stock," Energy Policy, Elsevier, vol. 147(C).
    10. Alabid, Jamal & Bennadji, Amar & Seddiki, Mohammed, 2022. "A review on the energy retrofit policies and improvements of the UK existing buildings, challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    12. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    13. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    14. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    15. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    16. Francesc Valls Dalmau & Pilar Garcia-Almirall & Ernest Redondo Domínguez & David Fonseca Escudero, 2014. "From Raw Data to Meaningful Information: A Representational Approach to Cadastral Databases in Relation to Urban Planning," Future Internet, MDPI, vol. 6(4), pages 1-28, October.
    17. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
    18. Shiyao Zhu & Dezhi Li & Haibo Feng & Tiantian Gu & Jiawei Zhu, 2019. "AHP-TOPSIS-Based Evaluation of the Relative Performance of Multiple Neighborhood Renewal Projects: A Case Study in Nanjing, China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    19. Belotti, Alice, 2016. "Estate regeneration and community impacts: challenges and lessons for social landlords, developers and local councils," LSE Research Online Documents on Economics 121480, London School of Economics and Political Science, LSE Library.
    20. Roberts, Simon, 2008. "Altering existing buildings in the UK," Energy Policy, Elsevier, vol. 36(12), pages 4482-4486, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:294-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.